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Abstract
Characterization of Steels by Anomalous Small-Angle X-ray Scattering

Peter René Jemian

The size distribution and volume fraction of Cr23C6 have been isolated from the distributions of all other precipi-
tates in aged samples of a ferritic alloy, Modified Fe9Cr1Mo steel, by the technique of anomalous small-angle X-ray
scattering (ASAXS), in what is believed to be the first application of this technique to precipitation in an engineering
alloy. The steel has been proposed for use at elevated temperatures for long times in power generation equipment and
the stability of the microstructure must be verified. Six samples were aged for 5000 hours at either room tempera-
ture, 482, 538, 593, 649, or 704◦ C to simulate a typical in-service condition. Synchrotron radiation was used as a
variable-wavelength source of X-rays. Three X-ray wavelengths near the Cr K absorption edge were used to vary
the scattering contrast of Cr23C6 while leaving that of the other precipitates fixed. A double-crystal diffractometer
and a silicon photodiode X-ray detector were specially designed for use at the synchrotron to measure the scattered
radiation. The three small-angle scattering curves from each sample were analyzed by a maximum entropy technique
to obtain three scattering contrast-weighted size distributions of all the precipitates that give rise to the observed scat-
tering. A scattering contrast gradient analysis combined the three experiments to isolate the Cr23C6 volume fraction
distributions. The mean diameter of Cr23C6 particles was found to increase with temperature for 5000 hour aging
between 538 and 704◦ C, consistent with prior transmission electron microscopy results.

The ultra-high strength steel alloy AF1410, currently used for arresting hooks on carrier-based aircraft, derives its
desirable properties by a delicate heat treatment that carefully balances the formation of one carbide with the depletion
of another. The lack of ASAXS near the Cr and Fe K absorption edges indicates that the distributions of precipitates
observed (presumably M3C and austenite) are iron-enriched and chromium-deficient.

Approved by Professor Julia R. Weertman
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Chapter 1 provides information about the ASAXS investigations of other workers and also some background on the
two steel alloys investigated by the ASAXS technique. In Chapter 2, the theory underlying small-angle scattering and
the specific ASAXS application, equations that describe the design and operation of the DCD optics, the process of
resonant Raman scattering, and a general description of the silicon photodiode detector are given. The experimental
equipment and procedure are described in Chapter 3. Chapter 4 describes the experimental commissioning of the new
DCD and photodiode detector using the scattering of polystyrene spheres and bulk microporous silica. Also given
there are the SAXS and ASAXS results for the two steels alloys being investigated. These data are summarized in
Chapter 5 and suggestions for future investigations with the DCD are presented. In the first appendix, the results
of SAXS experiments on other materials of interest in materials science are given. These materials are bulk micro-
porous silica and porous VycorTM glass. Other appendices contain the electrical schematics for the Si photodiode
detector, the computer programs for collimation correction, Lake.FOR, and interpretation of small-angle scattering,
MaxSas.FOR, and the experimental SAXS data for the steels.

SI units are reported throughout with the exception of degrees Celsius, rather than Kelvins, and mass density in
g·cm−3. The wavelength, λ, of X-ray photons is described in terms of their photon energy, E, where the relation
Eλ = 1.239857804 nm keV is used. Usage of nomenclature will be kept consistent within each section of the text
or explicitly noted. For style, this work follows guidelines set forth by Michaelson,98 but also takes advice from the
remarks of Mermin.97 Arguments on computer programming style15, 17, 100 were also considered.
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Chapter 1

Introduction

Several topics are addressed by this dissertation, in-
spired by the goal of observing the population of a sin-
gle type of precipitate in the presence of several dif-
ferent types, especially in ferritic steels of engineering
significance. Anomalous small-angle X-ray scattering
(ASAXS) is the method used for the investigations and
much of the information presented describes this rela-
tively new technique.

The specific application of SAXS to observe precipi-
tates of size 0.05 to 1 µm in steel alloys required the de-
velopment of new experimental equipment. Although a
pinhole SAXS camera with an associated area detector
provides a simple experimental arrangement, the angular
resolution for realistic physical camera lengths is not suf-
ficient to resolve scatterers within this size range. Other
portions of this work describe the theory, design, opera-
tion, and commissioning of a double-crystal diffractome-
ter (DCD) SAXS camera, capable of resolving scatterers
as large as a few micrometers. Results from the DCD
demonstrate the enormous benefit in angular resolution
obtained by the increase in experimental complexity. An
important advantage of the DCD over pinhole cameras is
its compact design.

The advantage of high source flux offered by the syn-
chrotron is usually a serious problem for X-ray detec-
tors such as scintillation counters and gas proportional
counters. These detectors operate in a photon counting
mode, and with high counting rates become decidedly
non-linear, possibly incurring physical damage. High
count rates are inherent in SAXS, when the largest dimen-
sions are observed in close angular proximity to the direct
beam. The pulse-mode detector limitations are overcome
by using the silicon photodiode X-ray detector described

here. Photodiodes operate in current mode so that they in-
tegrate the number of photons absorbed over time rather
than count individual photons. Physical damage by ex-
posure to high intensity synchrotron beams has not been
observed in the photodiodes used by beam lines X23 and
X24 at the NSLS.

With a new experimental technique, as well as new in-
strumentation, much of the experimental work described
in the results dwells on the operation of the instrumenta-
tion, verifying that the SAXS recorded are free of instru-
mental artifacts. Analysis of the scattering patterns from
a variety of samples supports the quality of the reported
SAXS from the steel; that it is devoid of instrumental arti-
facts. These ancillary results are further used to highlight
advantages and limitations of the instrument and the pro-
cedures of data reduction and interpretation.

1.1 Anomalous Dispersion Small-
Angle X-ray Scattering
(ASAXS)

Anomalous dispersion small-angle X-ray scattering
(ASAXS) refers to a multiple-wavelength series of small-
angle X-ray scattering measurements that exploit the
physical phenomenon of anomalous dispersion to affect a
variation in the contrast of scatterers. This phenomenon,
reviewed on pp. 135-192 of the book by James,64 occurs
when the X-ray photon energy (E = hc/λ) is close to the
binding energy of an electron of an element in the sam-
ple. Here, h is Planck’s constant, c is the speed of light,
and λ is the photon wavelength. As the binding energy

1
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is approached, the atomic scattering factor drops anoma-
lously. The drop is produced by resonance effects on the
X-ray photon by the bound electron. As the energy of
the X-ray photons is increased above the binding energy,
there is a significant increase in the absorption of X-rays,
as required for the liberation of the bound electron.

Each of the SAXS experiments in the multiple-
wavelength series is conducted under monochromatic
conditions where the experiments differ only by the en-
ergy of the incident X-ray photons. An X-ray source
of relatively constant intensity across the entire energy
range is required. Bremsstrahlung radiation from a lab-
oratory X-ray source exhibits this behavior but that in-
tensity is too low for small-angle scattering work. Char-
acteristic radiation also offers high intensity in the lab-
oratory but is available at select photon energies. Only
with the advent of synchrotron radiation has the practi-
cal application of ASAXS been a practical possibility be-
cause of the high intensity across a broad X-ray spectrum.
Evidence of this comes from the number of recent pub-
lications29, 31, 32, 46–48, 58–62, 88–91, 115, 120–126, 133–138 as well as
anomalous wide-angle X-ray scattering.41

SAXS experiments are used to characterize the
nanometer- to micrometer-scale structure of a sample.
The scattering is produced by differences in the scattering
length density. For X-rays, the scattering length density
is the dimension of an electron multiplied by the effective
electron density averaged over about a nanometer. When
the electrons respond in resonance to the X-ray photons,
via the anomalous dispersion effect, the effective electron
density drops. For scatterers with a strong concentration
difference in the anomalous element, the scatterers are
then labeled. This is the mechanism by which multiple-
photon energy ASAXS, can be used to extract information
from experiments that were indeterminate with a single
photon energy SAXS experiment.

1.1.1 Metallurgical Applications
All the metallurgical studies from the above list (work
of Goudeau, Hoyt, Lyon, and Simon) have used ASAXS
to reveal information about phase diagrams during the
early stages of unmixing in binary and ternary solid so-
lutions. This was accomplished by extracting the par-
tial structure functions from the scattering curve to ob-
tain information about each of the elements in the sam-

ple. With de Fontaine, Simon and Lyon120 compared
ASAXS to another well-known contrast variation tech-
nique, isotopic substitution in small-angle neutron scatter-
ing (ISANS). The contrast variation in ISANS is affected
by substituting a different atomic isotope in the alloy but
that occasionally leads to different metallurgical states be-
tween samples. Using ASAXS, a series of measurements
with different contrasts can be conducted on a single sam-
ple. Also, the number of different contrasts possible with
ISANS is limited by the available isotopes. A recent pub-
lication122 described the first ASAXS experiments con-
ducted on a material with engineering application: an
Fe-Cr-Co ductile permanent magnet alloy. These types
of experiments serve to demonstrate the maximal infor-
mation extraction possible from ASAXS in collaboration
with other techniques such as atom-probe field-ion mi-
croscopy (AP/FIM) or transmission electron microscopy
(TEM).

1.1.2 Other Applications

Early synchrotron ASAXS experiments were conducted
by Stuhrmann and co-workers who examined problems
in the field of biophysics. By using many photon ener-
gies near the iron K absorption edge, the location of the
four iron atoms in dissolved human hæmoglobin was dis-
covered. Further, a tetrahedral arrangement of those iron
atoms was determined and found to be in good agreement
with crystallographic data.

1.2 Steel Alloy Descriptions

1.2.1 Modified Fe9Cr1Mo Steel

A ferritic steel, Fe9Cr1Mo modified by the addition of
small amounts of the strong carbide formers V and Nb
(hereafter referred to as Modified Fe9Cr1Mo steel) has
been proposed for use in power-generation applications
at elevated temperatures.8, 74, 102, 116, 140, 146 Ferritic steels
containing nine weight percent or more of chromium have
found considerable acceptance for high temperature use
in corrosive environments.108, 148 This particular steel, the
composition of which is given in Table 1.1, was devel-
oped as part of the Advanced Alloy Program at the Oak
Ridge National Laboratory (ORNL).7, 13, 94, 119, 144 Modi-
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Table 1.1: Composition (weight percent) of Modified
Fe9Cr1Mo steel, Carpenter Technology heat #30394.
Principle alloying elements are emphasized in bold face.

C N Al Si P Ti
0.084 0.053 0.014 0.4 0.01 0.005

V Cr Mn Fe Co Ni
0.198 8.57 0.46 bal. 0.055 0.09

Cu Nb Mo W
0.04 0.073 1.02 0.05

fied Fe9Cr1Mo steel has a number of attractive features,
e.g., high rupture strength at both room and elevated tem-
peratures, good weldability, low thermal expansion, and
resistance to radiation-induced void swelling. An exten-
sive effort to characterize this material has been carried
out at ORNL and elsewhere.67, 71–73, 93

It is essential that a candidate material for power-
generation applications exhibit good microstructural sta-
bility over very long periods of exposure to high tempera-
ture service conditions. Otherwise an unfavorable change
in mechanical properties is likely to occur. The present
research has been concerned with the investigation of
changes in the precipitate size distributions in Modified
Fe9Cr1Mo steel produced by prolonged exposure to high
temperatures, concentrating specifically on the size distri-
bution of Cr23C6 to determine the stability of that phase
under long-term aging conditions at service temperatures.

In the Modified Fe9Cr1Mo steel, three types of precip-
itates have been consistently reported:67, 94, 144 vanadium-
rich MC, niobium-rich MC and chromium-rich M23C6.
The total amount of precipitate found by extraction and
observed in the TEM was a few weight percent. Compo-
sitions of the metal content in each of the three carbides
have been reported by Maziasz and are tabulated in Ta-
ble 1.2.

Fujita34–39 has reported on steels with chromium com-
position from nine to twelve percent and molybdenum
from one to two percent. The morphological evolution
of the principle carbide in these steels, M23C6, was re-
ported to proceed as shown in Fig. 1.1 where the M23C6

were found on martensitic lath boundaries. In a specimen
that was crept at 550◦ C, two precipitates were found in
the thin foils by the TEM, MX and M23C6, where X can
be carbon or nitrogen For times in excess of 3000 hours,

Table 1.2: Observed metal site percentages of carbides
found in a sample of Modified Fe9Cr1Mo steel, heat
#30394 that was crept at 650◦ C. Concentrations are in
atomic %, as reported by,129 determined in the TEM from
extracted precipitates.

carbide Cr Fe V Nb Mo
Cr-rich M23C6 65 25 2 — 7

V-rich MC 15 5 70 10 —
Nb-rich MC 5 1 15 79 —

needle (.1×.025 µm2)

?

planar (.2×.05 µm2)

?

spindle (.2×.1 µm2)

?

spherical (.2×.2 µm2)

?

granular (.3×.2 µm2)

Figure 1.1: Morphological evolution34–39 of principal car-
bides in steels with chromium composition ranging from
nine to twelve percent and molybdenum from one to two
percent.
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M3C - M7C3
- M23C6

Figure 1.2: Carbide reaction sequence103 applicable to
low silicon Fe12Cr1.5MoVNb steel.

the sizes were 0.02 µm and 0.15×0.05 µm2 respectively.
The MX precipitates were found to lie within the laths.

Fujita also shows that, for a Fe11CrVNb steel with
0.2% C and 0.1% (V,Nb), that after 103 hours tempering
at 650◦ C, 20% of the chromium is in carbides regard-
less of varying V or Nb initial concentrations. Also, when
0.1% (by weight) Nb is added, it is almost entirely in car-
bides by 500 hours at 650◦ C. Additionally, 70 - 80% of
V is in carbides by 103 hours at 650◦ C and appears to ap-
proach 90% asymptotically for infinitely-long tempering.
It is reasonable to expect that, in the Modified Fe9Cr1Mo
steel, all the Nb and most (>70%) of the vanadium is in
carbides. Because there are five times more V atoms than
Nb atoms in the alloy, one should expect to find a ratio of
VC:NbC of four:one or five:one.

Fig. 1.2 show the reaction kinetics of the carbides re-
ported103 for a low silicon Fe12Cr1.5MoVNb steel. 1000
hours were required to complete the reaction of Fig. 1.2 at
550◦ C, while the time decreased to 200 hours at 600◦ C,
and approximately 1 hour at 650◦ C. The kinetics of the
second stage of the reaction were measured by the drop in
the diamond pyramid microhardness from 550 DPH for
M7C3 to 300 DPH for M23C6. For the long aging times
used in the present work, little M3C or M7C3 should be
found. The reaction sequence102 of Fig. 1.3 is applicable
to the tempering of Fe2.25Cr1Mo steel.

At the initiation of this research project, almost all ex-
isting small-angle scattering cameras were capable of re-
solving only those scatterers with dimensions less than
100 nm. Using such a camera for neutron scattering,
Kim71 discovered that for Modified Fe9Cr1Mo, the num-
ber of carbides drops significantly between the aging tem-
peratures of 538◦ and 704◦ C. However, as is typical of
many engineering alloys, Modified Fe9Cr1Mo steel con-
tains more than one carbide type and Kim was unable to
determine if this change was attributable to a decrease in
the population of (V,Nb)C or of Cr23C6. Isolation of the
small-angle scattering from a single carbide type, either
(V,Nb)C or Cr23C6, is not possible with a single scattering

in ferrite: M2C ⇒ M6C

in bainite:

ε+M3C - M3C+M2C

6

- M23C6

M7C3
- M6C

6

Figure 1.3: Reaction sequence102 applicable to the tem-
pering of Fe2.25Cr1Mo steel.

experiment because the contrast, with respect to the ma-
trix, is different for each type of carbide. Additionally, his
SANS cameras were not capable of clearly resolving fea-
tures larger than some tens of nanometers although trans-
mission electron microscopy reveals that scatterers larger
than 100 nm are present in this alloy. The conclusion of
Kim’s SANS work was that the largest number of small
carbides, ca. 30 – 40 nm diameter, were produced by 5000
hours aging at 538◦ C, which was in agreement with the
observed peak in microhardness.53, 73

1.2.2 AF1410 Steel

A multi-institutional research program comprising units
from academia, government, and industry known as the
Steel Research Group (SRG) has been underway since
1985, directed at the scientific basis for a new steel tech-
nology motivated by specific property objectives of im-
portance to industry. In one of the key classes of steel se-
lected for research, the ultrahigh-strength martensitic al-
loy steels for advanced structural applications, the alloy
AF1410, the composition of which is given in Table 1.3,
is currently being used in the critical application of air-
craft arresting hooks on carrier-based jet fighters as well
as structural members in other aircraft. The objective for
improvements to this alloy are to increase the fracture
toughness, KIc , and also the hardness, while preserving
good hydrogen stress corrosion resistance so that KISCC

approaches KIc .
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Table 1.3: Nominal composition (weight percent) of
AF1410 steel, produced by Carpenter Technology. Trace
elements are not listed.

C Cr Fe Co Ni Mo
0.163 2.1 bal. 14.24 10.21 1.03

M3C - M2C - M23C6 + M6C

Figure 1.4: Precipitate reactions reported83 on tempering
of AF1410 steel.

The retardation of dislocation recovery imparted by
the cobalt allows an unusually high dislocation density
to remain during secondary hardening. Secondary hard-
ening is the result of the precipitation on dislocations
of a low volume fraction of finely-dispersed metastable
M2C (principally Mo2C) carbides during high temper-
ature tempering.19, 49, 51, 82 The M2C distribution ex-
hibits sufficient coarsening resistance to maintain the al-
loy strength and so the M3C (cementite) platelets, which
limit the fracture toughness, can be re-solutioned by slight
overaging. However, tempering times must be limited due
to a later-stage precipitation of M6C and possibly M23C6

in areas separate from the M2C83 An optimal heat treat-
ment of the steel will produce a population of coherent
M2C at the expense of all the M3C. A summary descrip-
tion of the reported precipitate reactions during tempering
suggests the carbide reaction sequence shown in Fig. 1.4.

Montgomery reports99 that austenitizing at 1000◦ C for
1 hour will cause all carbides to completely dissolve while
some carbides will remain undissolved after austenitizing
at 830◦ C for 1 hour. However, a substantial body of re-
search already exists for AF1410 austenitized at the lower
temperature which is the standard, commercial austeni-
tizing temperature. Information learned from the cleaner
microstructure offered by the higher austenitizing temper-
ature may be used in clarifying the analysis of the mi-
crostructure obtained from the standard austenitizing tem-
perature. By increasing the austenitizing temperature to
885◦ C, Gore45 found a significant reduction in the num-
ber of carbide types, as shown in Table 1.4. The trace

Table 1.4: Carbides observed45 in as-quenched AF1410
steel.

830◦ C austenitizing
carbide size range, nm

(Fe,Ni,Co)3C 50 - 100 rods
(Ti,Mo)x(C,N) 10 - 180

(Cr,Fe,Mo)23C6 50 - 125
(Fe,Cr,Mo)23C6 75 - 105

(Mo,Cr)xC 30 - 65
(Mo,Fe)xC 40 - 50

MoxC 5 - 10
885◦ C austenitizing

carbide size range, nm
(Fe,Ni,Co)3C 40 - 230 rods

(Ti,Mo)x(C,N) 20 - 35

amounts of the titanium nitrides found by Gore (< 0.1%
by volume) are due to TiN added to the alloy as a grain-
refining dispersion and are undissolved at the 830◦ C tem-
perature.

Using small-angle neutron scattering, the evolution of
the M2C population was traced1 as a function of aging
time at 510◦ C for samples austenitized at 830◦ C and
samples austenitized at 1000◦ C. Less total scattering was
observed in the 1000◦ samples corroborating the result of
Gore, but for both temperatures, the population of M2C
was followed from 510◦ C aging times as early 1/4 hour
up to 100 hours and the average particle dimension was
found to be in good agreement with that observed in the
atom probe field ion microscope and the transmission
electron microscope.

The present study will concentrate on observing the
changes in the M3C population using samples prepared
at the same time as those of Allen. Transmission elec-
tron microscopy99 has shown that the shape of the M3C
is most closely lenticular with outside dimensions of 2 to
5×100×1000 nm3, as shown in Fig. 1.5a. Fig. 1.5b, after
Gavillet,40 shows a larger, spherical precipitate that could
be a TiN that was undissolved during the 830◦ C treat-
ment. Dark field images have revealed that several M3C
precipitates are in the background of this micrograph.
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(a)

(b)

Figure 1.5: Bright field transmission electron micrographs of AF1410 steel. The condition is austenitized at 830◦ C
for 1 hour / oil quench and then aged at 510◦ C for 1 hour / water quench. (a) Plate 3235. The diagonal features are
the M3C carbides. Micrograph99 using a Phillips EM400T at an accelerating voltage of 120 kV. (b) Plate 3702. The
large precipitate could be a TiN that was undissolved during the 830◦ C treatment. Micrograph from Gavillet40 using
an Hitachi H700 at 200 kV.



Chapter 2

Theory

Five principle topics are addressed in the theoretical
section of this dissertation; small-angle scattering in gen-
eral, anomalous dispersion small-angle X-ray scattering
(ASAXS), resonant Raman scattering, the double-crystal
diffractometer (DCD) SAXS camera, and the operational
theory of the silicon photodiode detector.

2.1 Small-Angle Scattering (SAS)

A brief summary is presented of the general theory of
small-angle scattering, covered in detail by many au-
thors.16, 43, 50, 79 Equations will then be presented which
use this theory to describe the scattering from arbitrary
distributions of scatterers of spherical shape. The cor-
rection of the measured data for instrumental collimation
smearing will be discussed and then the method for deter-
mining the distribution of scatterers will be described.

2.1.1 Basic SAS Theory

In small-angle X-ray scattering (SAXS), the intensity, I ,
of radiation scattered by nanometer- to micrometer-size
electron density inhomogeneities is measured as a func-
tion of angle, q, within a few degrees of the unscattered
beam of intensity, I0 = Φ0A, transmitted through a sam-
ple as photon energy, E, (or wavelength, λ) is held con-
stant. Φ0 is the incident flux in ph·s−1·area−1 illuminat-
ing an area, A, on the sample. Precipitates, voids, oxides,
and composition-modulated structures are typical of the
electron density inhomogeneities observed in metallurgi-
cal samples. The magnitude of the reciprocal-space scat-

tering vector, ∣∣∣~h∣∣∣ = h = (4π/λ) sin θ (2.1)

where 2θ is the scattering angle. The intensity profile in
ph·s−1,56, 113

I(h) = Φ0AtTεΩ
dΣ
dΩ

(h), (2.2)

is measured by a detector with efficiency, ε, and subtend-
ing a solid angle, Ω, with a sample of uniform thickness,
t, and transmission, T . The measured transmission is re-
lated to the specimen thickness by T = eµt, where µ is
the linear absorption coefficient. dΣ/dΩ(h) is the dif-
ferential scattering cross-section per unit volume per unit
solid angle. The scattering is coherent and either a single
scattering event occurs within the sample or none occurs.
The optimal sample thickness is usually taken to be

topt = µ−1. (2.3)

For t < topt, the intensity is limited by the number of
scatterers in the beam. For t > topt, the potential for
multiple scattering increases.117

dΣ/dΩ(h) is an intensive property; it is not dependent
on the physical dimensions or amount of the sample. It
is described as the Fourier transform of the local (elec-
tron) scattering length density, ρ(~r), where ~r is a position
vector within the sample,

dΣ
dΩ

(~h) = V −1
s

∣∣∣∣∫
Vs

ρ(~r) e−i~h·~r d3~r

∣∣∣∣2, (2.4)

7
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and the integral is over the sample volume, Vs. If ρ(~r) is
constant over all ~r, then dΣ/dΩ will be zero, thus only
in the changes of the scattering length density, ∆ρ(~r), be-
tween a scatterer and its surroundings are involved. For
scattering from finely-divided solids, the scattering can be
interpreted in terms of a particle size distribution. Lord
Rayleigh104, 109 has described the scattering from a single
homogeneous particle of radius r and volume Vp(r) as

dΣ
dΩ

(h, r) = V −1
s |∆ρ(r)|2 |Vp(r)Fp(h, r)|2 (2.5)

where Fp(h, r) is a dimensionless form factor for the par-
ticle that describes the scattered amplitude of radiation
from a particle of a specific shape. The form factor is

Fp(h, r) = Fp(~h,~r) = V −1
p

∫
Vp

e−i~h·~r d3~r. (2.6)

In the work of Shull and Roess,112, 118 the particle-
to-particle scattering was assumed to be negligible for
their derivation of the particle form factor for randomly-
oriented ellipsoids of revolution. The intensity from a
number distribution of scatterers per unit volume, N(r),
whereN(r) dr is the number of scatterers per unit volume
of dimensions between r and r + dr, was described by

dΣ
dΩ

(h) = |∆ρ|2
∫ ∞

0

|Vp(r)Fp(h, r)|2N(r) dr. (2.7)

In terms of the volume fraction distribution, f(r) =
Vp(r)N(r),

dΣ
dΩ

(h) = |∆ρ|2
∫ ∞

0

|Fp(h, r)|2 Vp(r) f(r) dr. (2.8)

The latter definition of dΣ/dΩ will be used later in the
section on size distribution analysis.

Simplifications of dΣ/dΩ exist for two limiting cases
of scattering vector. The Guinier region50 for identical,
randomly-oriented, non-interacting particles, applies for
hr ≤∼ 1.5.79 dΣ/dΩ reduces to

lim
h→0

dΣ
dΩ

(h) = Nv |∆ρ|2V 2
p exp

[
−1

3
(hRG)2

]
. (2.9)

Nv is the number of particles per unit volume and RG

is the radius of gyration of the overall particle size dis-
tribution N(r), determined from the slope of a plot of
log(dΣ/dΩ) versus h2 as h goes to zero.

The other limiting case is the Porod region, in the tail of
the SAS curve, for hr > 10. The Porod region provides
information about the average surface area per unit vol-
ume of sample, Sv , where the average is weighted towards
the smaller particles if there is a distribution of sizes.

lim
h→∞

dΣ
dΩ

(h) = 2π SV |∆ρ|2 q−4. (2.10)

Sv is the total scattering surface area per unit volume of
sample irradiated by the beam and is determined from the
slope of a plot of log(dΣ/dΩ) versus log(h) or from the
intercept of a plot of h4dΣ/dΩ vs. h4. The slope of the
latter plot is often interpreted as the experimental back-
ground. In cameras with perfect collimation (i.e., pinhole
geometry), the scattering is proportional to h−4 whereas
for slit-collimation cameras, the scattering is proportional
to h−3. The Porod relation holds for hRp ≥ 3 where Rp

is the average radius predicted from Sv .

Each intensity measurement is a statistical representa-
tion of the entire size distribution, weighted by the parti-
cle form factor for that particular scattering vector. Con-
sequently, there is no unique correspondence between a
given dimension, D = 2r, and the scattering vector h.
The experimental parameters limit the range of dimen-
sions directly resolved by a SAXS experiment. Both
Guinier and Porod approximations may be used to deter-
mine the range of dimensions directly accessible to the
SAS experiment from the range of available scattering
vectors, ∆h < hmin ≤ h ≤ hmax. The largest di-
mension fully defined by the SAXS experiment, deter-
mined by the Guinier limit, is Dmax = 2(1.5/hmin)
while the smallest dimension is defined by the Porod limit
as Dmin ≥ 2(π/hmax). These limits are applicable to
spherical particles.

Scattering from particle dimensions outside this range
may be detected in the periphery of the experimental
range of scattering vectors but the extraction of the infor-
mation content of this peripheral information is less statis-
tically reliable than those dimensions between Dmin and
Dmax. The extent of this “peripheral vision” is about a
factor of two beyond Dmin and Dmax. For dimensions
outside Dmin/2 ≤ D ≤ 2Dmax, the range of scattering
vectors is insufficient to fully describe the scattering and
the data are considered incomplete.
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2.1.2 Scattering from Spherical Particles
The form factor for spherical particles of radius r at scat-
tering vector (magnitude) h is

F (h, r) =
3

(hr)3
[sin(hr)− (hr) cos(hr)] (2.11)

and the volume of that sphere

Vp(r) =
4
3
πr3 (2.12)

which combine to describe the small-angle scattering
from an arbitrary number distribution, N(r) of spherical
scatterers

dΣ
dΩ

(h) = 16π2 |∆ρ|2 h−6 (2.13)

×
∫ ∞

0

[sin(hr)− (hr) cos(hr)]2N(r) dr

or, in terms of the volume distribution, f(r),

dΣ
dΩ

(h) = 12π2 |∆ρ|2 h−6 (2.14)

×
∫ ∞

0

[sin(hr)− (hr) cos(hr)]2

r3
f(r) dr.

2.1.3 Instrumental Collimation Correction
There are three instrumental weighting functions that can
distort, or smear, the small-angle scattering data: wave-
length smearing (Pλ), slit-width smearing (Pw), and slit-
length smearing (Pl), where Pλ, Pw, and Pl are proba-
bility distributions of unit area. The circularly-symmetric
perfectly-collimated dΣ/dΩ are smeared by Pλ, Pw, and
Pl by

dΣ̃
dΩ

(h) = (2.15)∫ ∞

0

Pλ(λ)
∫ ∞

−∞
Pw(w)

∫ ∞

−∞
Pl(l)

× dΣ
dΩ

[√
(h− w)2 + l2

λ

]
dl dw dλ

Double-crystal collimation greatly simplifies this equa-
tion. The double crystal monochromator has a wave-
length resolution, defined as ∆λ/λ, of ' 0.0003, render-
ing wavelength smearing negligible. Slit-width smearing

Figure 2.1: The slit-length weighting function, Pl, for the
double-crystal analyzer and a silicon photodiode detector
for monochromatic X-rays of normal incidence. The sen-
sitivity of the photodiode is assumed to be constant across
its surface.76

is also negligible because of the narrow rocking curve of
the DCD analyzer. What remains is the slit-length weight-
ing function, Pl. In the slit-length direction, perpendicular
to the scanning direction, the detector subtends an angle
∆θl with a point within the illuminated area of the sample.
This angle is just the ratio of the diameter of the photodi-
ode detector divided by the distance between the sample
and the detector. The characteristic slit-length,

l0 =
1
2

[
4π
λ

sin
(

∆θl

2

)]
(2.16)

is then derived in a manner similar to that of the scattering
vector h, where the additional factor of two is derived ac-
cording to Fig. 2.1. Assuming that the detector sensitivity
is constant across its surface,76 Pl can be taken to be a
rectangular profile.

Although the DCD analyzer is between the sample and
detector, it in no way limits or alters the beam in the slit-
length direction, which is perpendicular to the diffraction
direction. The instrumentally-smeared SAS then reduces
to

dΣ̃
dΩ

(h) =
∫ ∞

−∞
Pl(l)

dΣ
dΩ

(√
h2 + l2

)
dl

= l−1
0

∫ l0

0

dΣ
dΩ

(√
h2 + l2

)
dl (2.17)

While an exact solution for the slit-length smearing equa-
tion exists for a slit of arbitrary profile,26–28, 86 a numer-
ical implementation of the algorithm given in the litera-
ture failed to regenerate a perfectly-collimated test case.
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Furthermore, the method requires the pre-calculation of
a non-trivial function, derived indirectly, from the slit-
length profile, Pl. A less direct but more flexible approach
was taken to desmear the small-angle scattering data as
explained below. The data were corrected for slit-length
instrumental smearing using the technique of Lake81 as
implemented in the FORTRAN program Lake.FOR.
The program will run on a variety of computers including
the Digital Equipment Corporation VAX, IBM PC, and
the Apple Macintosh. The source code is presented in an
appendix to this dissertation.

The technique of Lake seeks a solution of the in-
strumental smearing equation for the ideal, perfectly-
collimated data (I = dΣ/dΩ above) from the measured
data Ĩ by an iterative technique. This technique has been
applied to problems in absorption spectroscopy6, 52, 65 al-
though it appears that the method shown by Lake has
superior convergence properties and inherently avoids
the creation of unphysical negative intensities. Glatter42

sought to improve the technique of Lake by smoothing
the feedback term to the iterative correction and accel-
erating the convergence near sharp minima. However, the
smoothing requires a selection which can prejudice the re-
sult and can lead to the introduction of a systematic error
in the ideal pattern, especially near sharp features such
as sharp minima. Since some SAS data have no sharp
minima and other SAS data do, introduction of such an
algorithm leads to a loss of generality.

The method implemented for iterative desmearing in-
volves only forward smearing of a trial solution with feed-
back to improve the trial solution. The argument, which
is intuitively satisfying although without rigorous mathe-
matical foundation, is that the difference between trial so-
lution Ii and the perfectly-collimated data I0 should van-
ish as the difference between the smear of the trial solu-
tion Ĩi and the measured data Ĩ0 vanishes. Formally:

lim
i→∞

Ii − I0 = lim
i→∞

Ĩi − Ĩ0 = 0 (2.18)

which leads to the feedback equation

I0 ≈ lim
i→∞

Ĩi+1 = Ii −
(
Ĩi − Ĩ0

)
(2.19)

An infinite number of iterations would result in perfectly
collimated data but in practice, one declares a solution
when the feedback term on the far right of Eq. 2.19 has

become negligible. The feedback equation is common to
the work of Lake, Blass, Halsey, and Jansson although
the latter three appear to have arrived at it independently
from Lake. None of them have presented a rigorous math-
ematical proof that such a series will eventually converge.
Experience, however, shows that convergence is certain
for a wide variety of problems including desmearing and
deconvolution. To decrease the number of iterations, all
four investigators sought to improve the rate of conver-
gence by multiplying the feedback term by an empirical
function A. The methods offered by Blass, Halsey, and
Jansson achieved a modest improvement (ten to twenty
percent). It was Lake who reported, four years prior, that

A = Ii ÷ Ĩi (2.20)

offered significant improvement (ten-fold) in the rate of
convergence.

The feedback loop is thus modified to

I0 ≈ lim
i→∞

Ĩi+1 = Ii ×
(
Ĩ0 × Ĩi

)
(2.21)

which converges, for the majority of cases, in about ten
iterations. Because it does not employ a subtraction, the
modified feedback equation has the remarkable property
of not producing negative numbers, since the measured
data is always positive. The technique works best on
model data which has no random statistical errors. In this
case, numerical precision still tends to influence the iter-
ates after about twenty-five iterations or so, even when
using eighteen significant figures (IEEE standard ten byte
floating-point precision). On real data, the scatter of the
iterative solution becomes magnified three to five times
over that of the measured data.

The initial guess with the least bias is one which is per-
fectly flat. Since the analytical application of the modi-
fied feedback equation to a flat initial guess was shown
by Lake to invariably yield a trial solution equal to the
measured data, an initial guess of

I1 = Ĩ0 (2.22)

is used to set the process in motion.
The instrumental smearing equations require integra-

tion of the trial solution data out to infinite scattering vec-
tor or at least out to the slit-length which is often beyond
the range of available measured data. Extrapolation has
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often been used to overcome this termination effect of the
available data. One assumes that the data obeys a particu-
lar functional relationship over the entire scattering range
beyond the available data, and this is usually a good as-
sumption. Experimentally, an exact choice of the extrap-
olation function is not as important as the implementation
of an extrapolation function. In short, it is better to at-
tempt an extrapolation, even if the exact functional rela-
tionship is unknown, than to accept the termination effect.
The form of the extrapolation function has the largest ef-
fect on the final few data points. It has been found ad-
vantageous to defer subtraction of the experimental back-
ground until after desmearing, thereby potentially allow-
ing any features buried within the background to be re-
covered. In addition to the SAXS, the experimental back-
ground also figures into the instrumentally-smeared scat-
tering data. By not subtracting this background from the
measured data to be desmeared, the termination effect can
be further diminished. Mathematically, its does not matter
whether the background is subtracted prior to desmear-
ing. Measurements of this typically flat background are
often collected to quite large scattering vectors, beyond
what is considered the hmax of the SAXS information,
enabling a good estimation of the slope and intercept of
a linear extrapolation function. The termination effect
will then have its greatest effect on points which will be
sacrificed to background subtraction after desmearing, so
that the effect of an assumed extrapolation function can
be almost completely eliminated from the SAXS. The
Lake desmearing technique employed here does not re-
quire a particular functional form for the measured data,
the desmeared data, or the instrumental smearing func-
tions. It has been employed with success on a wide va-
riety of small-angle scattering data without problem as
will be shown. Success of the desmearing algorithm need
not be dependent on absolute units of small-angle scatter-
ing intensity although, in practice, all of the results pre-
sented here have been placed on an absolute scale before
desmearing.

2.1.4 Size Distribution Analysis by Maxi-
mum Entropy Technique

From the small-angle scattering experiments carried out
in this work, we seek to derive the dimensions and vol-

ume fraction of the scatterer by measuring the scattering
intensity profile. The equation relating the intensity, I ,
and the size distribution, f(D), as given above is an ex-
ample of a practical linear inverse problem.106 Finding a
unique solution is complicated by the fact that many dif-
ferent arrangements of particle size and volume fraction
may give rise to the same measured intensity profile. The
maximum entropy technique provides a method by which
a unique solution may be derived, biasing the result by a
choice of morphological model. The arrangement so se-
lected has the least structure consistent with the data.

For M independent observations of the small-angle
scattering which span a finite range of scattering vectors,

I(hj) ≡ Ij =
∫ ∞

0

Gj(D) f(D) dD (2.23)

j = 1, . . .M

where Gj(D) is the scattering for a single particle of lin-
ear dimension D and a scattering vector hj , and f(D) is
the differential volume distribution as before. All of the
scattering effects, including particle interference and in-
strumental collimation can be included within Gj(D) as
long as the relation remains linear with respect to D.

Maximum entropy is the constraint on a curve-fit of the
data Ij where the distribution f(D) serves as the con-
strained set of linear coefficients to the model scattering
function Gj(D). While the solution of the intensity equa-
tion to obtain a size distribution is but one example of a
practical linear inverse problem, solution of the non-linear
slit-length desmearing problem must be effected by other
methods such as those of Lake or Deutsch. However, it
is possible to incorporate the slit-length smearing oper-
ations into the model scattering function106 Gj(D) and,
because such an operation does not alter the linear rela-
tion between f(D) and Ij , thereby determine size distri-
butions directly from the smeared intensity data.

By assuming that f(D) is constant over the range D to
D+∆D, the integral may be replaced by a summation and
f(D)∆D replaced by fi.1 The problem is to determine
the coefficients of the distribution, fi, over some range

1The choice of where to position the ∆D term is important to maxi-
mum entropy solution. Here, we describe maximizing the entropy of the
volume fraction size distribution by means of its histogram. If the pro-
posed move of ∆D into the G matrix were to be implemented, then we
would be maximizing the height of each bin in the distribution without
regard to the volume fraction described by that bin. This is important
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of dimensions Di, where i = 1, . . . N . First, fi must be
positive for all Di. Also, the intensity,

yj =
N∑

i=1

Gi,j fi, j = 1, . . .M, (2.24)

calculated from fi is required to match the experimental
observations, Ij , within the experimental errors σj . The
constraint imposed by the maximum entropy technique is
that the configurational entropy S of the distribution fi,
be at a maximum. Borrowing from statistical thermody-
namics, the configurational entropy127 of the distribution
fi,

S = −
N∑

i=1

pi log(pi), (2.25)

represents the disorder of the distribution where

pi = fi ÷
N∑

k=1

fk. (2.26)

so that the
∑
pi = 1. In an information-theoretic sense,

the entropy measures the partitioning of the volume frac-
tion of scatterers required to localize the observed small-
angle scattering at each hj . Much simplification of the
calculation of entropy gradients with respect to the distri-
bution fi is made by Skilling’s modification of the entropy
definition to

Smod = −
N∑

i=1

fi

bi
log

(
fi

bi

)
, (2.27)

which aids the search technique for the fi by the intro-
duction of a featureless constant baseline, bi. The total
number of equivalent permutations of this distribution

W =

(∑N
i=1 fi/bi

)
!∏N

i=1(fi/bi)!
(2.28)

is analogous to the thermodynamic probability of the par-
ticular distribution. The number of bits of information in
bin i of the distribution in excess of the baseline, fi/bi,
is a large integral number and Stirling’s approximation

when the ∆Di are not all equal. For bins of constant ∆D, this makes
no difference.

then becomes valid. Both W and Smod reach a maxi-
mum when all the fi are the same. In the present case,
deviations from this flat distribution are produced only by
experimental evidence. Use of bi further avoids the nor-
malization of pi. Potton, et al˙ reported that the choice
of bi influences the rate of convergence of the Skilling
and Bryan search technique and they took all the bi equal
to a constant b. The initial trial distribution is taken as
fi = b for all i, a flat distribution. Replacement of pi by
fi/bi presumably has no effect on the maximization of the
configurational entropy of fi. A least-squares constraint
will require the yj to closely match the experimental in-
tensities Ij but such solutions interpret statistical errors
as due to microstructure. The present technique uses the
chi-squared statistic,

χ2 =
M∑

j=1

(
Ij − yj

σj

)2

, (2.29)

to gauge the misfit between experiment and prediction,
where σj is the standard deviation of each measurement.
On average, each point contributes unity so that the mean
χ2 is M , the number of observations. The maximum
entropy search technique implemented by Skilling and
Bryan seeks to solve for the coefficients fi by maximizing

Q = S − λχ2 (2.30)

subject to the constraint that χ2 is equal to the number of
data points. In this context, λ is the Lagrange multiplier
required to constrain the χ2. Thus, not only are the exper-
imental intensities used in the determination of the distri-
bution, but so are the experimental errors. The operation
of the maximum entropy algorithm is always checked127

by the gradients with respect to the fi of entropy,∇S, and
misfit, ∇C ≡ ∇(χ2). Final acceptance of a distribution
is contingent on the alignment between the two gradients,

η =
1
2

∣∣∣∣ ∇S|∇S|
− ∇C
|∇C|

∣∣∣∣2, (2.31)

tending towards zero. The single distribution of maxi-
mum entropy consistent with the data is located at η = 0.

Special emphasis must be placed on a strict definition
of the σj as the standard deviation of each experimen-
tal intensity, Ij . If the σj are uniformly over- or under-
estimated, it is a simple procedure to multiply the σj by
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the appropriate constant. However, the consequences of
an improper estimation of σj in a portion of the SAS curve
are very serious. Because of the underestimated σj in
part of the curve, the information content from that re-
gion will be overestimated. Because of the constraint that
χ2 = M , the information content from other regions of
the curve will be diminished. The resulting distribution
will have additional features similar to a least-squares so-
lution where statistical errors from this region have been
interpreted as microstructure, while information will be
missing from other parts of the distribution. A similar
argument may be made for over estimation of the σj in
some part of the curve. In the present case, the σj were
determined from shot-noise counting statistics.

The maximum number of independent coefficients pre-
dicted by the Nyquist sampling theorem is the larger of
Nmax = hmax/hmin or hmax/∆h. Using more than
Nmax bins in the size distribution will provide overlap-
ping information in the distribution without adverse ef-
fects on the analysis due to the χ2 = M constraint.

A rigorous test of the maximum entropy method im-
plemented by Potton105 has been presented elsewhere,23

where the matrix Gi,j was defined using the |∆ρ|2 of the
scatterer and the form-factor for spheres presented earlier.
Application of the Backus-Gilbert2 method for estimat-
ing the margin of error in a maximum entropy analysis
was also discussed by Potton107 but that method has not
been implemented in computer code and it will not be dis-
cussed here.

While the replacement of pi by fi/bi simplifies the
math for the determination of ∇S and ∇C, this replace-
ment may cause an imbalance between the magnitude of
S and χ2 that favors χ2 minimization, thereby sensitiz-
ing the Skilling and Bryan search technique to oscilla-
tions in the model scattering function Gj(D). Small fea-
tures develop in distributions during the late stages of the
iterative analysis and may be observed in the published
work of Culverwell where the Gj(D) were defined us-
ing the trigonometric spheres function from Eq. 2.11. In
that work, the scattering had been calculated from two
model Gaussian distributions. Random statistical error
was added to the intensities and then the result was an-
alyzed by the maximum entropy method. The distribution
derived by the maximum entropy analysis shows greater
commitment towards a least-squares solution than one
would expect from a maximum entropy constraint. Use

of less oscillatory scattering models presented here dimin-
ishes the oscillations in the resultant fi while retaining the
principle features of the two Gaussian distributions.

The maximum entropy method has been highly touted
as producing the most uniform distribution consistent
with the data yet small oscillations in the distributions ob-
tained using the Skilling and Bryan search technique ap-
pear to suggest a greater information content in the SAS
data than are supported by the statistics. However, the
fundamentals of the Skilling and Bryan method are based
upon the replacement of pi by fi/bi. The maximum en-
tropy method will, in theory, deliver a very good represen-
tation of the true distribution giving rise to the observed
scattering but the Skilling and Bryan implementation of
the search technique is somewhat flawed in this regard.
As the flaw is of minor significance, the method of Pot-
ton which relies on the Skilling and Bryan method will
be used to analyze most of the scattering data presented
here. The computer code used, MaxSAS.FOR, which is a
modification of the Potton code, Maxe.FOR, is presented
in an appendix to this dissertation.

The program Maxe.FOR estimates a value for the con-
stant background from the given data and also from the
fitted intensities derived from the size distribution. It fur-
ther suggests that this is the correct background, B, to be
subtracted from the input intensities. If a background has
already been subtracted from the input data, then the cal-
culated B is the additional amount to be removed. The
maximum entropy algorithm will tolerate a few negative
intensities, as long as their magnitudes are comparable to
or less than their reported errors. The background esti-
mated by Maxe.FOR,

B =

∑M
j=1 σ

−2
j (Ij − yj)∑M

j=1 σ
−2
j

(2.32)

is the weighted average difference between input, I , and
fitted, y, intensities, where the weighting is specified by
the input errors, σ. A high background reduces the infor-
mation content of the data by lowering the ratio of signal
to noise (S/N) as well as lowering the largest available
scattering vector, hmax. Therefore, a good estimation of
the background is essential to the success of the maximum
entropy analysis.

In summary, the maximum entropy size analysis tech-
nique is a curve fit of the experimental intensities using χ2
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statistics to generate a series of trial size distributions con-
strained by configurational entropy. Discrepancies in the
intensities calculated from each trial distribution are used
as feedback where the trial distribution is modified to in-
crease the functional Q = S − λχ2. Iteration is required
to fix the value of the Lagrange multiplier, λ. The first
trial distribution is completely flat, thereby introducing no
bias towards a particular distribution shape. Only misfits
between calculated and experimental intensities are used
as feedback to the trial distributions so that the experi-
mental intensity profile is never directly converted into a
distribution. In this regard, the size analysis technique
works in a manner analogous to the desmearing technique
of Lake; in both cases, a trial solution is repeatedly com-
pared with experimental data and then modified until the
convergence criteria are satisfied.

Furthermore, while the general shape of the maximum
entropy distributions may be assumed to accurately rep-
resent the scatterers, caution must be exercised to avoid
over-interpreting small features in the distributions due to
the sensitivity of the Skilling and Bryan maximum en-
tropy search technique to oscillations in the model scat-
tering function. This is of utmost importance when ex-
amining number distributions that are derived from the
fi(D), especially at low values of D where the particle
volume is quite small. Finally, negative intensities, due
to background subtraction, are tolerated by the analysis
technique as long as their magnitudes are comparable to
or less than their reported errors.

2.2 Anomalous Dispersion Small-
Angle X-ray Scattering
(ASAXS)

The technique used to isolate the scattering of chromium
carbide in the Modified Fe9Cr1Mo steel from that of
the MX precipitates is the contrast variation technique
called anomalous dispersion small-angle X-ray scattering
(ASAXS) where the contrast variation is obtained by the
physics effect of anomalous dispersion. Because this ef-
fect is a function of the X-ray energy (or wavelength) all
measurements can be carried out on a single sample. This
section describes the effect and the calculation of terms
that are necessary to the analysis. Practical limits of de-

tectability for ASAXS will be described as will the exper-
imental equipment necessary to make the measurements.
Finally, the method for isolating a particular scatterer will
be described.

2.2.1 Anomalous Dispersion and the Dis-
persion Corrections

The atomic scattering factor f is the ratio of the radia-
tion amplitude scattered by the actual electron distribu-
tion in an atom to that scattered by one electron localized
at a point.77 When the energy of an X-ray photon inci-
dent on an atom, of atomic number Z, is near the binding
energy for a core electron of that atom, the atomic scat-
tering factor decreases anomalously. This effect, called
anomalous dispersion, occurs because of resonance of the
bound electron due to the energy of the incident photon.
The scattering factor is modified

f(Z, k,E) = f0(Z, k) + f ′(Z,E) + i f ′′(Z,E). (2.33)

The first term, f0(Z, k), where k = λ−1 sin θ, is a first
approximation to the scattering factor. Tables of f0, for
each element as a function of k may be found in the In-
ternational Tables for X-ray Crystallography, Vol. III, pp.
201-227 and in X-ray diffraction reference texts.22 Taking
Z as the number of electrons,

lim
k→0

f0 = Z, (2.34)

and is independent of photon energy (wavelength) and
scattering angle. For experiments involving a quantitative
measure of the intensity of the scattering from a sample,
it is necessary to consider all the terms in Eq. 2.33. The
second and third terms are the complex anomalous dis-
persion corrections to the scattering factor and depend on
both atomic number of the elements in the sample and the
photon energy.

Absorption of X-rays increases sharply as the incident
photon energy is increased above the binding energy of
an electron in the sample. This increase in absorption is
described in the imaginary part, f ′′(Z,E). With further
increases in the photon energy, the absorption decreases
smoothly. The discontinuity in the absorption of X-rays
in a sample as the X-ray photon energy passes the bind-
ing energy of an electron in that sample is referred to as
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the absorption edge for that electron of that atom. To il-
lustrate, the binding energy of a 1s (K-shell) electron of
chromium is 5989 eV, so the Cr K absorption edge is at
5989 eV. For a sample of only one element at an incident
photon energy E, the optical theorem,62, 64

f ′′(Z,E) =
E

2re−ch
A

ρmNA
µl(E) (2.35)

=
E

2re−ch
A

NA
µm(E) (2.36)

relates f ′′ of the element with its linear absorption coeffi-
cient, µl, and mass absorption coefficient, µm, where re−
is the classical radius of an electron, c is the velocity of
light, h is Planck’s constant, NA is Avogadro’s number,
and ρm and A are the mass density and atomic weight
of the element. The real part of the anomalous dispersion
correction, f ′, at an incident photon energy,E, is obtained
from f ′′ by the Kramers-Kronig integral,80

f ′(E) =
2
π

∫ ∞

0

f ′′(ε)
ε

E2 − ε2
dε, (2.37)

where ε is the variable (X-ray energy) of integration.
The anomalous dispersion effect may be seen in the real

term, f ′(Z,E) when E is near the binding energy of a
bound electron. The real term tends to zero for photon
energies well above the K-shell absorption edge, Ek. As
E decreases to near Ek, f ′ falls sharply due to the res-
onance. As E continues to decrease below Ek, f ′ will
be seen to recover almost back to zero only to decrease
again near the binding energies of the other electrons in
the sample. A relativistic quantum-mechanical method
for calculating f ′ and f ′′ has been given by Cromer and
Liberman21 and is implemented in the FORTRAN code
fPrime.FOR, by A. Habenschuss of the Oak Ridge Na-
tional Laboratory and obtained from J.B. Cohen. Fig. 2.2
has been calculated by means of that code for photon en-
ergies near the chromium K edge of 5989 eV.

Fluorescence, which is constant as a function of θ, oc-
curs when the incident photon energy is above the elec-
tron binding energy, leading to an increased background
in a small-angle X-ray scattering experiment. Because
of this, ASAXS experiments are restricted to the region
E/EK < 1 (for the K edge) to avoid fluorescence.

The 1s electron binding energies of the transition el-
ements Ti through Ga are accessible to X-ray monochro-

mators with Ge optics at X-ray synchrotrons and are well-
separated with respect to the energy range over which the
anomalous dispersion effect occurs. Thus, the effect may
be exploited to change the scattering factor of a single el-
ement in a multi-element system, such as a large number
of engineering alloys, while leaving the scattering factors
of the other elements relatively constant. To illustrate, in a
metal alloy where the anomalous element is not enriched
in the matrix, the small-angle scattering from a precipi-
tate that is enriched with the anomalous element may be
isolated both qualitatively and quantitatively, even in the
presence of other scatterers which are not enriched in this
anomalous element.

2.2.2 Scattering Length Density, Contrast,
and Strength

The scattering length density is the total scattering length
b of a substance per unit volume V is calculated from the
composition and structure of the unit volume. In general,
the density of the scattering entity,

ρ =
∑

i

%ibi (2.38)

which uses the density of scatterers per unit volume, %i,
and scattering length, bi, of scatterers of type i, respec-
tively. For crystalline materials, %i is calculated from the
structure of the unit cell and the site occupancy fractions.
For noncrystalline materials, it is calculated from the mass
density and the atomic weight. In the case of neutrons, ta-
bles of bi, which are different for each isotope.79

The X-ray scattering length density is written as, ρe,
where the subscript e− signifies the effective density of
electrons. For X-ray energies near an electron binding
energy, as in Eq. 2.33, this effective density will decrease.
Consequently, bi is the effective scattering length of the
electrons. On average, the scattering length of a single
electron is its classical (Thomson) radius,

re− =
e2

4πε0mc2
, (2.39)

which is approximately 2.818 fm. The total effective scat-
tering length of electrons in a type i atom is given as

bi = (re−)fi. (2.40)
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Figure 2.2: Anomalous dispersion terms f ′(E) and f ′(E) calculated21 by means of the FORTRAN code
fPrime.FOR for photon energies near the chromium K edge (5989 eV).

By summation over all of the atoms in the sample, where
Z is the atomic number,

ρe− = (re−)
∑
Z

%ZfZ . (2.41)

Due to the complex nature of the atomic scattering factor,
fZ , the scattering length density for X-rays, ρe− , is also a
complex number. The same argument may also be made
in the case of neutrons where bi is complex for some iso-
topes. However, the scattering contrast, which is defined
as |∆ρ|2, is real-valued. In the section above describ-
ing the basic SAS theory, the scattering cross-section,
dΣ/dΩ, was shown to be proportional to |∆ρ|2. The scat-
tering contrast enables the separation of scatterers from
the matrix.

For precipitates in a metal alloy,

|∆ρ|2 =
∣∣∣ρe−,ppt − ρe−,mat

∣∣∣2 (2.42)

where ρe−,ppt is the scattering length density of the pre-
cipitate and ρe−,mat is that of the matrix. Combining with

the equation for the ρe− of each substance,

|∆ρ|2 =

∣∣∣∣∣(re−)
∑
Z

∆%Z fZ

∣∣∣∣∣
2

(2.43)

where
∆%Z = %Z,ppt − %Z,mat. (2.44)

Now, it is readily apparent that the SAS is produced by the
local changes in composition, ∆%Z . Including the disper-
sion corrections,

|∆ρ|2(E) =

∣∣∣∣∣(re−)
∑
Z

∆%Z [Z + f ′Z(E) + if ′′Z(E)]

∣∣∣∣∣
2

(2.45)
which includes the dependence on photon energy. One
can predict how |∆ρ|2 will change with E by means
of calculations involving the relevant dispersion correc-
tions and their weighting by the atomic density differ-
ences ∆%Z .

Three general situations arise for photon energies
(wavelengths) near an absorption edge:

• |∆ρ|2(E) will increase monotonically
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• |∆ρ|2(E) will decrease monotonically

• |∆ρ|2(E) will pass through a minimum

Exactly which of these three general situations will occur
must be calculated on a case-by-case basis. The first two
situations correspond to the scattering length densities di-
verging or converging, respectively, and are dominated
by changes in the f ′ of the anomalous element. The last
situation is the most unusual where the scattering length
densities are almost equal; the minimum corresponds to
the case of contrast matching where the summation of
∆%Z(Z + f ′) terms cancels and the contrast is defined
only from the summation of ∆%Zf

′′ terms. The value at
the minimum is the lowest possible value for |∆ρ|2(Ek)
between those two media at that absorption edge, Ek.

As mentioned before, f0 is a first approximation, use-
ful for some cases but in general, the dispersion correc-
tions must be included. One may be tempted to include
the dispersion corrections in the calculation of |∆ρ|2 for
only the elements with the largest ∆%Z or only for the
anomalous element. While this may provide a sense of the
change in contrast with energy, it will, in most cases, lead
to inexact values for the scattering contrast and amount
of change in that contrast as the absorption edge is ap-
proached. Therefore, it is necessary to extend the sum-
mation over all known elements in the composition and
to include the dispersion corrections for each of those el-
ements.

To characterize the amount of scattering, a figure-of-
merit called the scattering strength,

X ≡ Vf |∆ρ|2 (2.46)

combines the volume fraction, Vf , and scattering contrast,
|∆ρ|2, of the scatterer. If X is low, one should expect diffi-
culty in recording the scattering. However, X is the single
most-deciding factor on the viability of an ASAXS exper-
iment. In the ideal system for ASAXS, X of the anoma-
lous scatterer should be higher than that of any other scat-
terer in the system.

A relationship exists between the scattering strength
and the total scattered intensity. If f(D) is the differential
volume fraction distribution of scatterers of a single con-
trast, |∆ρ|2, such as obtained via the maximum entropy
method above, then the volume fraction of those scatter-

ers is

Vf =
∫ ∞

0

f(D) dD (2.47)

But Vf is also related to the well-known scattering invari-
ant, Q, in equation (2.32) of Porod,104 by integration of
the isotropic, total scattered intensity over all h,

Q =
∫ ∞

0

I(h)h2 dh = 2π2|∆ρ|2Vf . (2.48)

Both Q and X are invariant of the size distribution of the
scatterers. In fact,

Q = 2π2X. (2.49)

Successful evaluation of Q from SAS data depends upon
the availability of a sufficient range of h so that the in-
tegrand tends to zero for both h ∼ 0 and h ∼ ∞. The
evaluation is complicated by two problems:

1. uncertain extrapolation of the data beyond the mea-
sured range of scattering vectors,

2. magnification of random statistical errors at high h

An improved evaluation may be made directly from the
maximum entropy size distribution which was derived by
an entropy-constrained curve-fitting technique that min-
imizes random statistical noise. Limiting forms of ex-
trapolation were avoided by modeling all of the scatter-
ing simultaneously using a model scattering function. Be-
cause the maximum entropy distribution represents all of
the statistically significant dimensions present in the scat-
tering and is the distribution of maximum configurational
entropy that is consistent with the intensity data, it is pos-
sible to obtain a more reliable measure of the invariant by
combining Eq. 2.47, 2.48, and 2.49,

Q = 2π2

∫ ∞

0

x(D) dD, (2.50)

where x(D) = |∆ρ|2f(D). As the scattering strength X
is the product of the contrast and volume fraction, the pre-
ceding integration is valid for both simple systems with
a single scattering contrast and complex systems where
there is more than one type of particle. For the situation
where there are i different types of scatterers,

Q = 2π2
∑

i

|∆ρ|2i
∫ ∞

0

Vp(D)Ni(D) dD, (2.51)
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from the differential number distributions, Ni(D), and
scattering strengths of each different type of particle. Ad-
ditional information must be supplied in the latter case to
separate the various component distributions.

2.2.3 Experiment Requirements for
ASAXS

Because the drop in f ′ due to the anomalous dispersion
is highly localized to the vicinity of the electron binding
energies, a basic requirement of ASAXS is a variable-
photon energy source of X-ray photons, such that the in-
tensity does not change appreciably as a function of pho-
ton energy over the desired range of photon energies. The
new generation of synchrotrons provide such a source as
well as other desirable characteristics making them well-
suited to the needs of SAXS, in general. Low emittance,
good angular collimation, and high flux are among these,
but also at the newer synchrotrons such as the National
Synchrotron Light Source (NSLS) at Brookhaven Na-
tional Laboratory, lifetimes of the stored electron beam
producing the X-rays are upwards of 8 hours, thereby pro-
viding practical time frames for the completion of a single
SAXS experiment. The broad high-intensity spectrum of-
fered by the synchrotron is superior to the Bremsstrahlung
spectrum from a sealed X-ray tube or rotating anode
X-ray source. The latter is of such low intensity that
impractically-long counting times are required to develop
adequate counting statistics for the scattering measure-
ments.

The range of energies available for ASAXS at a syn-
chrotron is usually 5 to 25 keV, dependent on the design of
the beam line monochromator and the energy-dependent
intensity profile of the synchrotron radiation. The high in-
tensities of the synchrotron allow relatively rapid counting
intervals to acquire adequate counting statistics. Because
the synchrotron experiment is of much shorter duration
then the lab experiment to get the same statistics, materi-
als science investigations of practical significance can be
carried out.

Energy resolution, defined as ∆E/E, is also important
for discrimination of the photon energy-dependence of the
scattering contrast, |∆ρ|2(E), near and far from the ab-
sorption edge. A quantitative measure of the minimum
required energy resolution is dependent on the scattering

system. To illustrate, a contrast change of a few ten per-
cent demands better energy resolving power than does a
contrast change of three times. The energy resolution of
a double-crystal monochromator, typically ' 0.0003, is
sufficient to handle a change in scattering contrast as low
as ca. 25% but this limit requires a high volume fraction,
Vf >∼ 5%, for practical measurements of the ASAXS
intensity differences.

2.2.4 Limits of Detectability
In a metal alloy, the ASAXS technique is used to isolate
the scattering of a single type of scatterer in the presence
of other types of scatterers. While many metallurgical
alloys exist with several types of scatterer present, espe-
cially engineering alloys, not all are good candidates for
ASAXS. On the basis of the experiments reported here,
minimum limits of detectability have been established for
application of the ASAXS technique at an X-ray syn-
chrotron described here. Those limits appear in Table
5. Note from item 6, that a large number of important
metallurgical systems potentially may be addressed by the
ASAXS technique.

2.2.5 Isolation of a Single Scatterer by
ASAXS

In this section, the procedure of isolating a single scat-
tering type (from a distribution of many types) will be
presented. The SAS intensity, dΣ/dΩ written here as I ,
is the product of three terms: contrast, amount in terms
of a distribution function, and scattering profile per unit
amount. The generalized matrix form,

I(E, h) = C(E, s)F(s, r)G(s, r, h), (2.52)

where I(E, h) are the intensities of the ASAXS exper-
iments at different energies, E, and different scattering
vectors, h, C(E, s) are the |∆ρ|2 of each different type of
scatterer, s, for each E, F(s, r) are the distributions of
each s at each dimension r, and G(s, r, h) are the scatter-
ing profiles of each s at r and h.

Generally, SAXS experiments are conducted under
monochromatic conditions. In this case, C reduces to a
scalar, F reduces to a column vector, and G is reduced
to two-dimensions. This is the situation addressed by
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Table 2.1: Observed minimum limits of ASAXS de-
tectability for precipitation in a steel alloy, estimated from
the present experimental data.

1. The size of the scatterer should be within the range of 1 nm
to 1,000 nm, as limited by the resolution of the small-angle
scattering camera. For a double-crystal diffractometer, the
lower limit increases to ca. 40 nm.

2. The precipitate to be studied by ASAXS should be highly
enriched (or depleted) in the anomalous element within
only that precipitate, with respect to the bulk alloy.

3. The minimum detectable total scattering strength, X =
Vf |∆ρ|2, is 3 − 5 × 1027m−4. The scatterer is termed
weak if X < 1028m−4.

4. The change in total scattering strength due to ASAXS
should be greater than 30%.

5. The energy resolution of the monochromator, ∆E/E,
should be less than 0.0005.

6. For Ge optics: the accessible K-shell absorption edges are
the 3d transition elements: Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, and Ga. The accessible L edges are Cs, Ba, and the
lanthanides.

the maximum entropy size distribution analysis code dis-
cussed above, which seeks a solution to

I = F(C G). (2.53)

Written as such, it is but one special case of the general-
ized equation. Three approaches may be used to extract
useful information from the generalized equation, each of
which involve groupings of two of the RHS terms in the
generalized equation (in parentheses) and solving for the
third:

I. I = C(F G) (2.54)
II. I = F(C G) (2.55)

III. I = (C F)G (2.56)

Grouping I (Eq. 2.54) corresponds, roughly, to the
method used by Lyon, et al.,88 to determine the three
partial structure functions, for example, SAA, SAB , and
SBB , for the AA, AB, and BB scattering events in bi-
nary systems. The work was also extended to ternary sys-
tems. In the nomenclature used there, S corresponds to

our (F G), and the assumption of vanishing scattering in-
terference terms is relaxed. Using this method, unmix-
ing in several binary and ternary alloys was studied by
determining the tie-lines in the corresponding phase dia-
grams.89, 91 An advantage of their approach is that sys-
tems with scattering interference may be examined and it
is not necessary for those systems to have precipitation,
just unmixing. However, the partial structure functions,
S, so determined must be further reduced if dimensional
information, analogous to F , is sought.

Grouping II (Eq. 2.55) is the form best suited for a max-
imum entropy determination of F for all types of scat-
terer s, using ASAXS scattering intensities, I, from all
energies simultaneously. By this method, the entropy of
each distribution is maximized, subject to the input data,
energy-dependent scattering contrasts, and assumed scat-
tering form-factors. Such a method is the most direct
determination of the distributions, with the potential for
introducing the least bias on the part of the interpreter.
But the problem is unwieldy on a computational level, re-
quiring the use of a four-dimensional representation of G
which must be calculated for each combination of E, s,
r, and h. It is unlikely that so many floating-point values
should be maintained in a pre-calculated array for use by
the entropy maximization search technique. Such an array
would encompass some one hundred thousand floating-
point elements, requiring more than one megabyte of ran-
dom access memory. A more memory-conservative ap-
proach would be to calculate each element in G as it is
needed. Because the iterative search technique of Skilling
and Bryan127 accesses each element in G about seven
times per iteration, and the number of iterations required
to converge upon a solution is a few 10 to 100, repeti-
tive calculations of G at run-time seems an unnecessary
expense of CPU-time, hence the method is abandoned.

Finally, grouping III (Eq. 2.56) solves for the scatter-
ing strength distributions, X ≡ (C F), at each separate
energy, deferring the determination of the individual dis-
tributions of scatterers, f , until a later step. While the f
so obtained are inferior in theory to the distributions ob-
tained from a solution using grouping II in the sense that
they are not necessarily the volume fraction distribution of
overall maximum entropy, the method is straightforward
and can yield a satisfactory numerical result.

Furthermore, the method provides a simple technique
for assessing a margin of error in the determined f . The
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technique for a maximum entropy determination of the
size distribution is used as before, but a different problem
is to be solved. Assuming that all the scatterers have the
same morphology and consequent model scattering func-
tion, the transformed problem seeks a scattering strength
distribution by

I = (C F)G = X G (2.57)

and is solved for each energy independently. X is the
summation of the scattering strengths of all scatterers at
that photon energy. To extract the distributions of the in-
dividual scatterers,

X = C F (2.58)

must be solved separately for each dimensional bin in the
distribution by combining results from different energies.
It is obvious that the stronger the variation in C, the more
detailed the information about F may be. Direct matrix
inversion, XC−1 = F , is not practical as C is usually
ill-conditioned except for the anomalous scatterer. Linear
least squares can lead to the generation of negative val-
ues of F , an unphysical result. The maximum entropy
approach would be the most satisfying method, however
the error margins of F are not well known and it would
be most difficult to determine such values as precisely as
the maximum entropy approach requires. Therefore, a
modification of the linear least-squares approach has been
taken.

To illustrate, consider the case of three types of scatter-
ers, each of the same morphology so that the G(hi, Dj)
are identical for all three scatterers. The problem can be
exactly solved for the volume fraction distributions of the
three scatterers by SAXS experiments at three different
photon energies. For convenience, the photon energy-
dependent scattering contrast of each scatterer is defined

Cs(Ek) ≡ |ρs(Ek)− ρm(Ek)|2. (2.59)
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Eq. 2.57 is then re-written I(hi, E1)
I(hi, E2)
I(hi, E3)

 =
∑

j

G(hi, Dj)


 C1(E1) C2(E1) C3(E1)
C1(E2) C2(E2) C3(E2)
C1(E3) C2(E3) C3(E3)

 f1(Dj)
f3(Dj)
f3(Dj)


T

(2.60)

which is then written in terms of the scattering strength distribution I(hi, E1)
I(hi, E2)
I(hi, E3)

 =
∑

j

G(hi, Dj)

 xT (Dj , E1)
xT (Dj , E2)
xT (Dj , E3)

 . (2.61)

Each of the scattering strength distributions, for each photon energy, is determined separately from each experiment
by the maximum entropy method using

I(hi, Ek) =
∑

j

G(hi, Dj)xT (Dj , Ek). (2.62)

The scattering strength distributions are written xT (Dj , E1)
xT (Dj , E2)
xT (Dj , E3)

 =


 C1(E1) C2(E1) C3(E1)
C1(E2) C2(E2) C3(E2)
C1(E3) C2(E3) C3(E3)

 f1(Dj)
f3(Dj)
f3(Dj)


T

. (2.63)

The scattering contrast matrix of Eq. 2.63 is ill-conditioned with respect to scatterers 2 and 3 if the change in scattering
contrast with photon energy is significant only for scatterer 1. In this case, Eq. 2.63 reduces to the ASAXS gradient
method,  xT (Dj , E1)

xT (Dj , E2)
xT (Dj , E3)

 = f1(Dj)

 C1(E1)
C1(E2)
C1(E3)

 + x2+3(Dj), (2.64)

and f1(Dj) is the slope of a plot of xT (Dj , Ek) vs.
C1(Ek). The complete volume fraction distribution is de-
fined by repeated applications of Eq. 2.64 for each diame-
tral bin,Dj . The standard deviation of the slope of a linear
least-squares fit, σ[f1(Dj)], provides an estimate of the
margin of error in the analysis. While it is possible for the
situation f1(Dj) < 0 to occur, it is observed in such cases
that 0 < |f1(Dj)| < σ[f1(Dj)], indicating a lack of sta-
tistical certainty about dimensionDj . Therefore, negative
f1(Dj) values are set to a small, positive value generally
considered below the threshold of detectability. At least
three different scattering contrasts are required to develop
sufficient statistics about the distribution of the anomalous
scatterer. For more than one anomalous scatterer, energies
near another absorption edge must be used and the num-

ber of energies must be increased.

2.3 Resonant Raman Scattering

A source of background becomes important to ASAXS
experiments when the incident photon energy,E1, is close
to the binding energy of a core electron (e.g., E1s for a 1s
electron) of some element in the sample. The background
is due to an inelastic resonance scattering process known
as resonant Raman scattering (RRS). This scattering has
been observed to be constant as a function of angle130, 131

while the intensity spectrum was shown to be dependent
on E1. For 2pj-electron RRS, the energy range of the
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intensity spectrum was

ERRS = E1 − (E2pj + Eεp), (2.65)

where 0 < Eεp � E2pj
and E2pj

is the binding energy
of a 2pj electron. Thus for 2pj-electron RRS, the photon
energy of RRS is always lower than the incident photon
energy by at least the binding energy of a 2pj electron.
The peak intensity in the spectrum, apparent from Spark’s
figures, is for Eεp just greater than zero.

A special case of the statistical theory of RRS is de-
scribed by Tulkki and Åberg,142 where it was shown how
RRS develops into fluorescence as the incident photon en-
ergy is raised above the absorption edge energy. Further
papers141, 143 showed the intensity of RRS to increase as
the incident photon energy increased towards the absorp-
tion edge energy, confirmed by the experiments of Sparks
as well as others.30, 92

The DCD optics can be exploited to reject any possi-
ble RRS intensity from these ASAXS experiments. Since
ERRS < E1, the Bragg angle for RRS is greater than
the Bragg angle for the incident photons by a few degrees
when using Ge111 monochromator optics for 6-11 keV in-
cident photons. When the DCD analyzer optics are tuned
to the Bragg angle of the incident photon energy, the RRS
is suppressed 10−11 ∼ 10−10 by the rocking curve of the
optics. By measuring the ASAXS at angles smaller than
the Bragg angle for the incident photons, RRS is effec-
tively eliminated from the experiment by the optics. The
same argument may be applied to any fluorescence the
photon energy of which is less than that of the incident
photons.

2.4 Double-Crystal Diffractometer
Camera (DCD)

A description of the theory of the double-crystal diffrac-
tometer (DCD) and important references in its develop-
ment are presented. Also presented are the optimizations
of the instrument for the synchrotron X-ray source. In
the last section, equations are given to calculate the rock-
ing curve and associated terms. The reader is referred to
Zachariasen149 for a more complete description of the the-
ory. Exact details of the construction of the DCD will be
presented in Chapter 3 (refchap:3).

2.4.1 Bonse-Hart Design

Optimal utilization of the X-ray source depends on the
scientific problem that is being addressed.78 The objec-
tive of the current study was to measure the small-angle
scattering from features as large as one µm, requiring a
scattering vector variation, ∆h ≤ 0.003 nm−1. Only
SAXS cameras of the double-crystal, or Bonse-Hart de-
sign9 have such capability. (Note: In this discussion,
double-crystal instruments refer to the use of one or more
crystal reflections before the sample position and one or
more crystal reflections after the sample position.) A sec-
ond objective was to use the ASAXS technique of contrast
variation which meant using synchrotron radiation. As
there are no permanent installations of Bonse-Hart cam-
eras at any synchrotrons in this country available for X-
ray research, it was necessary to design and build one.
By considering the properties of the synchrotron radia-
tion source, the optics were designed to maximize the X-
ray power available for scattering while still maintaining
a low ∆h.

The double flat crystal instrument in the non-dispersive
(1,-1) setting with the sample between the two crystals
was first used for SAXS by Fankuchen and Jellinek.33

The (1,-1) notation refers to the first-order Bragg reflec-
tion in both collimator and analyzer crystals. As shown
in Fig. 2.3,68 the first crystal acts as a collimator for the
source and the second crystal analyzes the scattered radi-
ation from the sample by rotating about an axis positioned
on the surface of the second crystal. Because collimation
is achieved by Bragg reflection rather than geometry, the
illuminated sample area can be quite large, 4 × 3 mm2 in
the case of Kaesberg, et al.69, 70 Thus, ∆h is limited only
by the angular width of the rocking curve.

The intensity profile, with no sample in place, is the
convolution of the rocking curve of the first crystal with
that from the second crystal. As mentioned above, the
tails of the intensity profile from a single flat crystal will
fall as θ−2, and so shall the tails of this so-called 1×1
crystal pair. The m × n notation refers to the number
of reflections in the collimator and analyzer crystals, re-
spectively. Making both the collimating and analyzing
crystals asymmetric,20 a 1×1 camera allows one to make
SAXS measurements closer to the direct beam than any
m×n camera with symmetric crystals.

Previously, it was shown that the perfectly-collimated
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Figure 2.3: The (1,-1) geometry of the 1×1 two crystal spectrometer for small-angle scattering.68 As wavelength is
constant and angle is scanned, diffractometer is the correct term.

small-angle scattering intensity at the highest θ in the
experiment falls as θ−4 while the slit-smeared intensity
available with the double-crystal diffractometer goes as
θ−3. Without adequate precaution then, it is possible for
the instrumental empty beam signal to be larger than the
small-angle scattering signal at high θ with a 1×1 double-
crystal diffractometer. A method of circumventing this
possibility, described in the classic paper of Bonse and
Hart,10 replaces each of the single-reflection flat crystals
in Fig. 2.3 with an n-reflection channel-cut crystal. The
tails of the intensity profile from each channel-cut crystal
will fall proportional to (θ−2)n so that n ≥ 2 is adequate
insurance. An asymmetrically-cut fore-crystal was also
used by Bonse and Hart to increase the angular accep-
tance, the cross-sectional area, and the throughput of the
instrument.

In general, an m×n double-crystal diffractometer will
have an instrumental profile that will fall off as (θ−2)ν

where n is the lesser of m or n. Therefore it is necessary
for small-angle scattering experiments to have at least two
reflections both in the collimator and the analyzer so that
the instrument profile falls off at least as rapidly as the
scattering.

The 2×2 arrangement enjoys the highest through-
put24, 25 of the possible m×n double-crystal diffractometer
SAXS cameras and the greatest flexibility for wavelength
selection at a synchrotron X-ray source while still main-
taining a low instrumental intensity profile. As with any
double-crystal instrument, special attention must be given
to suppress the harmonics12 as well as to the avoid any
spurious reflections due to Laue diffraction (Kostroun,
1980). Bonse and Materlik11 suggested using single crys-

tal reflections for which the refraction index correction for
the Bragg angle is different for the fundamental and its
harmonics in order to separate the diffraction orders.

For two symmetric crystals in the (1,-1) diffractometer
setting, the resultant positions of the harmonics are cen-
tered on the fundamental. The harmonics are detuned by
using a setting near y′ = +1 or y′ = −1 for the fun-
damental but this also reduces the fundamental intensity
as well. For two asymmetric crystals in the same (1,-1)
diffractometer setting, the resultant positions of the har-
monics become re-centered on the fundamental and the
improvement of the first asymmetric reflection is lost by
the second crystal. So to reduce the harmonics but main-
tain the fundamental intensity, it is necessary to use crys-
tals of different asymmetry angle in the monochromator.
Unfortunately, this is not good enough for SAXS exper-
iments because the scattering from the fundamental and
the harmonics are offset but the scattering due to the har-
monics is not eliminated.

The instrument used in this work, described elsewhere
in this dissertation as well as Long, et al.,85 includes an
asymmetric first crystal in magnification mode and a sym-
metric second crystal in a separated-function, fixed-exit
monochromator. In the historical sense, these crystals
would serve as the collimation system. Presently, they
determine the photon energy bandpass from the white
synchrotron X-ray source, which is already highly col-
limated. A pair of symmetric crystals, held in a mono-
lithic fixture, act as the analyzer. All of the crystals are
germanium with flat surfaces and use (111) Bragg reflec-
tion. The asymmetric first crystal is cut with the surface
inclined 7.02◦ towards the nearest (110).
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Silicon would offer a ∆h smaller than that from germa-
nium, but the more narrow rocking curve decreases the X-
ray power available for scattering. Based upon the body
of existing electron microscopy data for the steels under
examination, the smaller ∆h provided by the Si optics
(over the Ge optics) is not justified by the loss of source
intensity.

2.4.2 Optimization of the Optics for the
Synchrotron Source

Germanium was chosen because of its structure factor, its
high reflectivity, its relative perfection, and the width of its
intrinsic rocking curve. The full width at half maximum
for Ge111 is≈20 seconds of arc at 6 keV. The opening an-
gle for 6 keV photons at the National Synchrotron Light
Source is ≈44 seconds of arc. An asymmetrically-cut
crystal can be oriented so as to increase the photon energy
bandpass, increase the angular acceptance, and decrease
the angular emittance (improve the collimation) from the
synchrotron source. In particular, a 7◦ offset increases the
angular acceptance of the Ge111 crystal to ≈30 seconds
of arc at 6 keV. This means that approximately 75% of
the available photons at this energy are accepted by the
experiment.

The cross sectional area of the beam is modestly en-
larged (2.2×) and none of it is lost if the crystals are ade-
quately large (∼50 mm diameter). Table 2.2 shows the pa-
rameters of importance for matching the optics of the first
crystal to the opening angle of the source over the photon
energy range of interest. The resulting ∆E (eV) is also in-
dicated. It is especially important to keep the energy reso-
lution, ∆E/E, in mind because the ASAXS experiments
are performed at various photon energies near an absorp-
tion edge to achieve a variation in scattering contrast. Ex-
act calibration of the energy scale of the monochromator
is essential as the absorption edges of the 3d transition
elements are 20 eV wide and fluorescence must not be
allowed.

In the present instrument, the harmonic contribution to
the signal is 10−4 (see Table 2.3) and is achieved because
of the qualities of the source and the effect of the interven-
ing Ge K-edge on the X-ray structure factor. The X-ray
flux from the bending magnet source is a factor∼ 102 less
at 18 keV than at 6 keV and the drop is even more precip-

Table 2.3: Measured Intensity at the Sample Position in
the Diffraction Orders.

E (keV) (hkl) Ihkl/I111

6 (111) 1.0

18 (333) 1.9× 10−4

24 (444) 5.2× 10−5

30 (555) 1.1× 10−5

42 (777) 9.3× 10−7

48 (888) 9.3× 10−7

itous for the harmonics at 24, 30, 42, . . . keV. The he-
lium beam path between the ultra-high vacuum front end
of the beam line and the first monochromator crystal is the
only area of the experiment which discriminates against
the photon energy of interest. The transmission through
20 m of He is 81% for 6 keV X-rays and 94% for 18 keV
X-rays. The structure factor for 18 keV is 10% of that for
6 keV and this is multiplied for each reflection. The sili-
con PIN photodiode discriminates strongly against higher
energy photons because its efficiency is 100% at 6 keV
and only 36% at 18 keV but the 18 keV photons gener-
ate a photocurrent three times that of the 6 keV photons,
canceling out the improvement due to detector efficiency.

Collecting all of these factors together by comparing
Ge111 to Ge333, the source discriminates against the har-
monic by a factor of 102 ∼ 103, the He beam path causes
an enhancement of the harmonic by a factor of ∼ 1.2,
and the crystal monochromator discriminates against the
harmonic by a factor of ∼ 102. In all, a reduction of
104 ∼ 105 is predicted. To test this estimate, the actual
intensity through a 3×3 mm2 area at the sample position
was measured using calibrated filters, a scintillation de-
tector, and a pulse height analyzer. The results are shown
in Table 2.3. Each harmonic was maximized in turn by
means of slight adjustments of the crystals so that the
measurements would accurately represent the true peak in
the number of photons at each energy. It can be seen that
even the first available harmonic contains ∼ 10−4 fewer
photons than the primary energy. Thus the harmonic con-
tribution to the experiment is at the 0.02% level.
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Table 2.2: X-ray Source, Ge111 Asymmetric (α = 7◦) Crystal, and DCD Camera Parameters

E (keV) 5 6 7 8 9 10 11

2σv (arc sec)2 47.3 43.8 41.0 38.8 36.9 35.3 33.9
∆θcr (arc sec)3 34.6 29.8 25.8 22.9 21.2 19.3 19.2

∆E/E(×10−5)4 41 43 44 45 47 48 50
∆E (eV)5 2.0 2.6 3.1 3.6 4.2 4.8 5.5

hmin (nm−1)6 0.0061 0.0059 0.0055 0.0051 0.0049 0.0044 0.0043
I0 (ph s−1)7 2 6 9 18 14 10 6

θB (◦)8 22.307 18.440 15.731 13.723 12.173 10.940 9.935
m9 1.85 2.17 2.55 3.02 3.64 4.48 5.69

w0 (nm−1)10 n/a 0.00147 0.00138 0.00128 0.00122 0.00117 0.00108
l0 (nm−1)11 0.249 0.285 0.327 0.374 0.403 0.448 0.493

2.4.3 Rocking Curve Calculation
The intensity profile, PH/P0, of a single Bragg reflec-
tion, H = (hkl), from a perfect single crystal, including
absorption within the crystal, is given by

Ph

P0
≡ D(y) =

∣∣∣y ±√
y2 − 1

∣∣∣2 [3.192] (2.66)

where
y = y′ + iy′′ (2.67)

is a reduced variable of angle (or wavelength), generally
complex. The bracketed numbers in the next equations
refer to numbered equations in Zachariasen.149 When
y′ < 0, the positive sign is taken, whereas for y′ ≥ 0,
the negative sign is taken, so that 0 < D(y) ≤ 1 is valid
for all y. For|y| >∼ 4, D(y) tends to |y|−2. With n such
reflections, the composite intensity profile,

D̂(y) =
n∏

i=1

D(y + ξi), (2.68)

where ξi is the offset in the reduced angular scale for each
reflection, i, from the first reflection. For |y| >∼ 4, D(y)
tends to |y|−2n. In Fig. 2.4 are plots of the single reflec-
tion D(y), both with and without absorption. The defini-
tion of y, given in several locations in Zachariasen,149

y =
(1−m)F0 + 2m(θB − θ)Γ−1 sin(2θB)

2T
√
|m|FH FH̄

[3.116,3.141,3.148,3.181] (2.69)

The structure factors of the participating atomic planes
(considering that the crystal is not necessarily centro-
symmetric) are

F0 = structure factor at(000)
FH = structure factor at(hkl) (2.70)
FH̄ = structure factor at(h̄k̄l̄)

The magnitude of the deviation from unity of the index of
refraction,

Γ =
re−λ

2

πVc
[3.101], (2.71)

where re− is the radius of an electron (2.818 fm), λ is the
wavelength, and Vc is the unit cell volume. The polariza-
tion correction,

T =
σ + (1− σ) cos2(2θm) cos2(2θ)

σ + (1− σ) cos2(2θm)
, (2.72)

where θm is the anlge of the monochromator and σ is the
fraction of σ polarization in the incident beam. Typical
X-ray synchrotron monochromators use Bragg reflection
and strong σ-polarization. The magnification factor,

m =
sin(α+ θB)
sin(α− θB)

, (2.73)

is due to the angle, α, between the crystal surface and
diffracting planes (hkl). In wavelength terms, θB =
|α| defines the (theoretical) maximum wavelength pos-
sible for a specific crystal by Bragg’s law. By inverting
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Figure 2.4: Intensity profile, D(y), of a single reflection from a perfect single crystal; (dashed) without absorption
(y′′ = 0), and (solid) including absorption within the crystal.

Eq. 2.69, taking only the real parts of the complex terms,
the scattering angle,

θ = θB −
2y′T

√
|mFHFH̄ | − (1−m)|F0|
2m sin(2θB)/Γ

(2.74)

where θB is the Bragg angle. It is clear that the center of
the rocking curve, at y′ = 0, will only coincide exactly
with θB in the symmetric Laue case where |α| = π/2 and
m = +1. The full width of D(y) extends from y′ = −1
to y′ = +1 so the rocking curve width

∆θ =
2TΓ

sin(2θB)

√∣∣∣∣FHFH̄

m

∣∣∣∣ (2.75)

2.4.4 Asymmetric Reflection

A spatial magnification of the incident radiation is ef-
fected by 0 < α ≤ θB (demagnification is −θB ≤ α <
0). This is most easily shown by Fig. 2.5, using an hypo-
thetical crystal, where a beam incident from the left on the
asymmetrically-cut crystal intersects the atomic planes at
θB ≈ 11◦. Its cross-section is magnified 4.5× on diffrac-
tion due to the α = 7◦ asymmetry angle.

Figure 2.5: Demonstration of X-ray beam spatial magni-
fication using an hypothetical crystal with an asymmetric
cut. The Bragg reflection is specular with respect to the
atomic planes (indicated by horizontal lines). When the
crystal surface is not parallel to the atomic planes, the X-
ray beam is either magnified (in this case) or demagnified,
depending on the direction of inclination.
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2.5 Silicon Photodiode Detector
A silicon photodiode and custom-design electrometer am-
plifier were implemented to remove deficiencies of exist-
ing types of X-ray detectors.66 The SAXS intensity mea-
sured in an experiment is three to seven orders of mag-
nitude less than the beam transmitted directly through
the sample and generally decreases with increasing an-
gle. The maximum angle at which scattered intensity can
be measured, thereby defining the smallest features di-
rectly resolved in the experiment, is the angular position
at which the SAXS intensity is comparable to the para-
sitic scattering background. For this reason, good signal-
to-noise detectors such as scintillation counters (SC) or
gas-proportional counters (GPC) are employed in pulse
counting mode. The sample transmission coefficient,
Ts = exp(−µmρmt), is also an important parameter in a
SAXS experiment for an accurate background subtraction
and absolute scaling of the intensities. The transmission
measurement is usually made by comparing the intensity
at zero degrees scattering angle with the sample in and out
of the beam.

With a SC or GPC, it is always necessary to attenu-
ate the X-ray beam so that the detector is not damaged
by the high flux and so that the output is linear with in-
tensity. The spectral characteristics of the beam incident
upon the detector are altered by attenuators, which can be
an important problem if the incident X-ray beam includes
harmonic contamination. Sometimes a current mode de-
tector, such as an ionization chamber (IC), is used to di-
rectly measure the transmission but it also has a spectral
response different from that of the SC or GPC, leading to
the same problem as above. Unfortunately, the IC can not
be used for measuring SAXS intensity because of its high
noise level.

An ideal SAXS detector would be capable of measur-
ing the sample transmission without attenuation and also
performing the experiment without interruption. Inter-
ruptions occur during SAXS experiments using an SC
when the need to install or remove an attenuator arises.
The IC delivers an output current proportional to the X-
ray intensity and is capable of measuring the direct X-
ray beam without suffering radiation damage as men-
tioned above. However, its usefulness is limited because
of its high intrinsic noise. A silicon photodiode oper-
ated in photovoltaic (unbiased) mode can be treated as if

it were an IC63 but delivers a higher signal and conse-
quently higher signal-to-noise than the IC by virtue of its
higher quantum efficiency. The PD detector can be used in
conjunction with very high intensity X-ray sources, such
as synchrotron radiation which has been rendered nearly
monochromatic (mSR), and offers the most efficient op-
eration with the advantage of a wide dynamic range with
linear response.

2.5.1 Principles of Operation
The principles of operation of PIN diode detectors oper-
ated in photovoltaic mode for synchrotron X-rays have
been explained previously.14, 63, 75 In summary, an in-
cident X-ray photon is absorbed within the photodiode
thickness, t, and excites valence or core electrons to high
lying conduction band states. The absorption length,
1/µm(E)ρm for 6 keV photons is one-tenth the photo-
diode thickness, hence the efficiency for absorption,

η(E) = 1− exp[−µm(E)ρmt], (2.76)

is almost one hundred percent. In Eq. 2.76, µm(E) is the
mass absorption coefficient and ρm is the mass density
of the photodiode. These electrons excite other electrons
into the conduction band. The original photoelectron is
thereby thermalized into a number of electron-hole pairs,
proportional (ωb = 3.6 eV average per electron-hole pair
for silicon) to the energy of the photon. The number of
electron-hole pairs generated, the quantum yield, is given
by

q(E) =
E

ωb
η(E). (2.77)

The lifetime of these pairs is sufficiently long for them to
diffuse across the entire thickness of the photodiode and
produce a photocurrent,

i(E) = q(E) eN(E) ∆E. (2.78)

Here, e is the charge of an electron and N(E)∆E is the
number of ph·s−1 with energy between E and E + ∆E.
The total photocurrent generated by the photodiode is the
integral over all the energies of photons absorbed plus the
photodiode noise and offset (dark) current and is written:

I = e

∫ ∞

0

q(E)N(E) dE + ioffset + inoise (2.79)
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For a monochromatic X-ray beam, the integral of
Eq. 2.79 reduces to Eq. 2.78. Typically the noise cur-
rent from a PIN photodiode is 10 to 100 fA/

√
Hz. For

photocurrents above the noise current and below the p-i-n
junction saturation current (ca. 0.1 to 1 mA), the pho-
tocurrent is proportional to the photon intensity. The lin-
ear intensity range for a monochromatic beam of 6 keV
photons is then 102 to 1012 ph·s−1!

The PD is most efficient for low energy (up to 10 keV)
photons and the efficiency decreases dramatically above
10 keV. When used with a monochromator, this effect
suppresses (but does not eliminate) the monochromator
harmonics. With the wide dynamic range, it is not neces-
sary to attenuate the beam in any manner and SAXS data
acquisition may proceed at the rate of a few seconds per
angular position.

Silicon photodiodes, used individually, are not position
sensitive devices.75, 76 It is possible, however, to utilize a
photodiode array for such purposes but that application is
not discussed here.

2.5.2 Amplifier Electronics

The fact that the wide dynamic range of the photodiode
detector (PD) is linear requires a comparable degree of
linearity in the associated circuitry. Commercial elec-
trometers are available which, using multiple scales, can
measure the resulting wide range of photocurrents. With
such a device, one needs to zero each scale separately. In a
SAXS experiment, regardless of how carefully the ranges
are adjusted, the data would be interrupted by imperfect
overlap regions as the scales change. The cabling required
to carry the photocurrent to the electrometer can be a sig-
nificant source of capacitance and noise, effectively rais-
ing the lowest measurable intensity. By incorporating a
custom-built electrometer into the PD housing, this po-
tential source of noise is reduced significantly. The cost
of the components to build such a PD detector / electrom-
eter system can be significantly less than other types of
X-ray detectors.

The problem of applying the photodiode to measure
SAXS efficiently is reduced to one of building an elec-
trometer to span the full dynamic range of output from
the photodiode. The electrometer can be constructed in
one of three ways:

1. a log ratio amplifier

2. a charge integrating amplifier

3. current-to-voltage (CV) converter

The log ratio amplifier is often used for signals with a
wide dynamic range, such as light transmission measure-
ments, where measurement of an input ’signal’ current is
made against a ’reference’ current. The output is the log-
arithm of the ratio of signal to reference. Commercial
log ratio amplifiers101 usually have a five decade dynamic
range which is not sufficient to span the range of pho-
tocurrents in SAXS measurements.

The charge integrating amplifier87 has the advantage of
having fewer components than a log ratio amplifier. The
input current is integrated over time until a reset relay is
closed or the operational amplifier saturates. The output
voltage is proportional to the amount of charge accumu-
lated. For constant photocurrents, this means that the out-
put voltage is proportional to the integration time which,
depending on the value of the capacitor, can vary from
mS to kS. Dynamic range is limited by the practical lim-
its of integration time for low photocurrents. The main
disadvantage of the charge integrating amplifier is the ne-
cessity to zero the integrator for each new measurement.
This requires active control to operate a reset relay. With a
single capacitor, the dynamic range of this circuit is about
3.5 decades, limited by the range of the operational am-
plifier, but it is possible to incorporate multiple capacitors
to change integration rates.

The most common form of electrometer circuit is the
CV converting electrometer shown Fig. 2.6, the noise and
frequency response of which has been analyzed by Ham-
stra.54 The number of circuit components is compara-
ble to that of the charge integrating amplifier. The feed-
back resistance is selected to measure a specific range of
photocurrents. The value of the smoothing capacitor, C,
should be chosen so as to roll off the response of the am-
plifier below the frequency where noise poles occur due
to the inherent capacitance of the photodiode.75 Input
capacitance is further minimized by shortening the dis-
tance between photodiode and amplifier. As in the case
of the charge integrator, the dynamic range of this circuit
is about 3.5 decades which may be extended by switching
feedback resistances which is also shown.
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(a)

(b)

Figure 2.6: Schematic of a current-to-voltage (CV) con-
verting amplifier with (a) a single range of amplification
and (b) two different time-constants and amplifier gains,
selected by a switch. 3.5 decades of dynamic range are
typical for each scale.
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Chapter 3

Experimental

The experimental procedure and equipment will be de-
scribed as will the metallurgical state of the as-received
samples. A room-temperature chemical polishing solu-
tion for the preparation of steel samples for small-angle
X-ray scattering will be given. This solution may also
be used to pre-thin TEM samples prior to jet-polishing.
Drawings of the double crystal diffractometer SAXS cam-
era are given which detail the essential parts. Finally,
equations are given to reduce the raw data to experimental
SAXS data, including the process of collimation correc-
tion.

3.1 Steel Samples

3.1.1 Heat Treatment

25 mm thick by 150 × 150 mm2 plates of Modified
Fe9Cr1Mo steel, Carpenter Technology heat #30394,
were obtained from Dr. Vinod Sikka of the Advanced
Alloy Program at the Oak Ridge National Laboratory in
the normalized and tempered (N&T) condition, which is
the standard condition used in actual service. Prior to the
N&T treatment, the plates had been hot-rolled from an
argon-oxygen-decarburized / electroslag remelted ingot
(Bodine & McDonald, 1983). Normalization, to remove
the effects of any prior mechanical or thermal treatments,
consists of heating a large plate, ca˙ 25×300×3000 mm3,
for one hour at 1038◦ C and then cooling to room temper-
ature in air. The microstructure produced is lath marten-
site. The tempering temperature of 760◦ C was main-
tained for one hour and then followed by air cooling. The
resultant microstructure is ferrite (tempered martensite).

Upon receipt at Northwestern University, each plate was
aged 5000 hours at either 25◦, 482◦, 538◦, 593◦, 649◦, or
704◦ C to simulate a typical in-service condition. Slices
of the AF1410 steel measuring 40×20×0.15 mm3 were
received from the Steel Research Group, headquartered at
Northwestern University. The slices had been subjected
to a solution heat treatment for one hour at either the stan-
dard temperature of 830◦ C or 1000◦ C which was be-
lieved to deliver a cleaner microstructure. Subsequent to
solution heat treatment, each slice was aged at 510◦ C
for times ranging from 1/4 hour to 100 hours. The resul-
tant microstructure is ferrite (tempered martensite). These
samples were then thinned for SAXS using the technique
described below.

3.2 SAXS Sample Preparation
The optimum thickness for steel SAXS samples is of the
order of 15-20 µmwhen the experiments are conducted
at monochromatic photon energies from 5000 eV up to
the absorption edge energy of iron (7112 eV). Just above
the iron absorption edge, this optimum thickness drops to
about 4 µm. In the present case, all experiments were con-
ducted below the iron absorption edge. From each plate of
Modified Fe9Cr1Mo steel, a 25×25×25 mm3 cube was
cut using a band saw. From this, a wafer ca˙ 0.4 mm
thick was sliced from the interior, to avoid edge effects
of the sample due to the heat treatment, using a Buehler
IsometTM diamond wafering saw. The as-received thick-
nesses of the AF1410 steel samples were sufficient to skip
this step. Each wafer was then immersed in a polishing /
thinning solution of 80% (volume) concentrated hydrogen

31
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peroxide, 5% hydroflouric acid, and 15% distilled water
operating at room temperature. This solution is an excep-
tional general purpose thinning solution for most ferritic
steels. It leaves smooth surfaces and does not appear to
attack the sample edges appreciably. The solution is quite
dangerous because of the presence of the hydroflouric
acid and special handling precautions were taken.

NalgeneTM beakers were used for the solution,
TeflonTM forceps were used to hold TeflonTM coated mag-
nets which were use to remove the steel sample from the
solution, and face shield, HF-proof lab apron, and HF-
proof gloves were worn. Most importantly, the base that
was used to neutralize the solution after thinning was am-
monium hydroxide instead of the more commonly-used
sodium hydroxide to avoid a toxic reaction product. It
was necessary to conduct the thinning in a fume hood be-
cause the reaction between the hydroflouric acid and the
iron evolves much gas. Periodically, the wafer (now re-
sembling a foil) was removed from the solution, neutral-
ized in a solution of 20% (volume) ammonium hydroxide
in water, rinsed thoroughly in methanol, and then dried.

Foil thickness was measured using a hand-held mi-
crometer with an accuracy of ca˙ 5 µm. The microme-
ter was calibrated against a series of metal foils of known
thickness and was used to determine if the sample thick-
ness was within a factor of two of the optimum thickness.
As each foil became sufficiently thin, it became quite flex-
ible and also tended to swim in the thinning solution. The
solution was diluted at this stage to slow the chemical re-
action so that the sample would not be completely eroded.
Thinning was discontinued when the sample thickness
was below 30 µm or when sample dimensions had re-
duced below 3×3 mm2. The foil was then preserved by
taping it, along one edge, to a microscope slide and stor-
ing in a cool dry location while awaiting beam time at the
synchrotron.

3.3 Equipment
The small-angle scattering measurements were conducted
on beam line X23A3, of the National Synchrotron Light
Source at Brookhaven National Laboratory. As a guest
user of that facility, the equipment was designed as a tem-
porary installation but it was also designed to take advan-
tage of particular features of the X23A3 beam line. In this

section, that installation is detailed.

3.3.1 X-ray Source
The X23A3 beam line, primarily used for X-ray topog-
raphy, is operated by the Materials Science and Engi-
neering Laboratory of the National Institute for Stan-
dards and Technology. A drawing of X23A3 follows that
shows the installation of the double-crystal diffractome-
ter SAXS camera. Experiments may either make use of
a monochromatic X-ray beam in the energy range 4 to
25 keV or use the unmodified white synchrotron beam.
Harmonics of the fundamental X-ray photon energy are
suppressed by specialized design of the Ge optics. No
grazing incidence mirrors are used. The entire beam line
operates in one atmosphere helium from the water-cooled
mask at the exit of the storage ring front end up to the ex-
perimental hutch. Beam line hardware is controlled and
monitored by a single-user Digital Equipment Corpora-
tion MINCTM 11/23 minicomputer running the RT11 real-
time operating system.

In Fig. 3.1, a white synchrotron X-ray beam is emit-
ted from the storage ring (1) and enters the monochro-
mator some 17 meters distant, after passing through a
water-cooled Be window (2). The entire monochroma-
tor operates in just above one atmosphere of helium.
Monochromator entrance slits (3) have been moved out
of the white beam, the intensity of which is always mon-
itored by ionization chamber (4). The white beam is
monochromated by the first monochromator crystal (5),
a Ge111 crystal cut 7.02◦asymmetric, oriented in mag
mode as shown. The second monochromator crystal (6), a
Ge111 symmetrically-cut crystal, is oriented so the beam
which exits the monochromator is parallel to the white
synchrotron beam that enters the monochromator. The
exit-side ionization chamber (7), which measures the in-
tensity of the monochromatic beam, is used in tuning
the monochromator to the desired photon energy. The
cross-section of the monochromatic X-ray beam is de-
fined by the exit slits (8) before it leaves the monochro-
mator. Monochromator helium pressure is maintained by
the beryllium window (9). Beyond this, the beam line op-
erates in air. Should an experiment require the white syn-
chrotron radiation, the first crystal (5) in the monochro-
mator is moved out of the beam and the beamstop (10)
for the white beam is removed. To maximize the incident
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Figure 3.1: Installation of the double-crystal diffractometer SAXS camera on the X23A3 beam line at the National
Synchrotron Light Source at Brookhaven National Laboratory. See the text for a description of each element.

monochromatic X-ray flux on the sample (12), a beam
transport tube (11) pressurized to just above one atmo-
sphere with helium is installed. Contained within this
transport tube is an ionization chamber, used to moni-
tor the intensity of monochromatic X-rays incident on the
sample. Two pins project on the exit side of the tube and
serve to position the sample support ring in a reproducible
manner. The two symmetric Ge111 analyzer crystals (14
and 15) are rotated together as a monolith (13) to mea-
sure the small-angle scattering profile from the sample.
The surface of the first analyzer crystal is positioned at
the center of the monolith rotational axis to avoid preces-
sion of the beam as the monolith is rotated. The silicon
photodiode X-ray detector (17) is shielded from the para-
sitic scatter of radiation by the scatter slit (16).

3.3.2 Monochromator

The monochromator is a double-crystal, fixed-exit de-
sign that allows the changing of the crystal optics. The
surfaces of both crystals in the monochromator are flat
and may be cut parallel or asymmetric to the diffracting
planes. Each crystal is mounted on a stage which pro-
vides two axes of rotation (surface normal and Bragg).
Additionally, the second crystal may be fine-tuned about

the Bragg angle using a piezoelectric transducer. The first
crystal stage is mounted on a vertical translation arm to
adjust to the position of the incident synchrotron radi-
ation. The second crystal stage is mounted on a hori-
zontal translation arm to provide a fixed-exit position for
the monochromatic beam. All mechanical motions and
ionization chambers are under control of the beam line
MINCTM computer.

In the small-angle scattering experiments, monochro-
matic X-rays of energy ca. 6 keV were obtained from a
double flat-crystal, fixed-exit monochromator. The en-
ergy spread of the monochromated beam was about 3 eV.
We supplied monochromator crystals prepared by Eagle-
Picher Industries, Inc. from a single boule of single crys-
tal germanium, grown along the (111) crystallographic
axis. The first crystal was cut asymmetrically from the
(111) planes with the surface inclined 7.02◦toward the
nearest (110). The second crystal was cut symmetrically,
parallel ±0.02◦to the (111) axis, as shown in Fig. 3.1.
Two symmetrically-cut single crystals of germanium were
taken from the same boule as the monochromator crys-
tals to be used as the double-crystal analyzer, located in
the experimental hutch. All four crystals were cut with
flat surfaces. The perfection of each of these perfect sin-
gle crystals was verified by X-ray topography. A second,
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comparable set of four dislocation-free silicon crystals
were also prepared, should the three-fold improvement in
angular resolution be required.

It was necessary at the beginning of each block of ex-
perimental time, to allow one day for the installation and
alignment of the germanium crystals by the resident beam
line scientist. An additional half-day of beam time was
required to prepare the equipment for SAXS operation.
Spatial definition of the beam was performed using the
monochromator tank exit slits. The entrance slits were
wide open. The slits are positioned using a stepping motor
with a linear precision of 10 µm. During each experiment,
the exit slits were usually fixed at 3×3 mm2.

After the beam line preparations, transmission radiog-
raphy was used to verify the uniformity of sample thick-
ness within the area illuminated by the X-ray beam. This
technique allowed the sample position to be adjusted on
the sample support ring so that any pinholes or variations
in thickness of the sample due to chemical preparation
technique could be avoided. The transmission radiogra-
phy experiments were conducted by replacing the DCD
analyzer with a video camera and fluorescent screen. X-
ray absorption contrast could thus be directly observed on
a television monitor.

3.3.3 Experimental Hutch

The experimental hutch, located downstream of the
monochromator is equipped with mechanical arms which
provide two independently-operating systems of three-
dimensional translation motions and two-dimensional ro-
tation motions. The white beam window was sealed
with a lead block and locked with a KirkTM key. The
monochromatic beam from the monochromator enters the
experimental hutch through a beryllium window which
provides a mechanical seal for the monochromator he-
lium. The double-crystal diffractometer analyzer is
mounted on one of the mechanical arms, the photodiode
detector on the other.

3.3.4 Beam Transport and Incident Beam
Monitor

A helium-filled beam transport tube was constructed with
a built-in ionization chamber to avoid attenuation and air

scattering of the monochromatic beam in the space be-
tween the beryllium window and the sample position. The
250 mm long ionization chamber with 300 VDC applied
potential between two copper plates, is located inside the
transport tube that is filled to just above one atmosphere
of helium gas and served as the incident beam monitor
(M ) for the SAXS experiments. Attenuation of a 6 keV
beam in this detector is less than 0.5%. A single layer
of KaptonTM tape was used to seal each end of the tube.
Two pins project from the metal wall on the exit side of
this tube and serve to position the sample holding ring in
a reproducible manner, to within an estimated precision
of 100 µm. The sample position is thereby fixed in space,
in line with the fixed exit of the monochromator.

3.3.5 Double-Crystal Diffractometer Ana-
lyzer Monolith

The separated-function double-crystal diffractometer ana-
lyzer measures the small-angle scattering from the sample
that is within the rocking curve width at the selected angle
and photon energy. The two crystals are supported on a
monolithic structure, simulating a two-reflection channel-
cut crystal. While being more difficult to align than a
channel-cut crystal, the two crystal arrangement provides
flexibility of operation unavailable by any other method.

Part of this flexibility is derived from the large spatial
definition of the incident X-ray beam on the sample. A
large beam is desired to illuminate a sample volume as
large as possible and to provide the greatest number of in-
cident photons for scattering. It is not possible to design a
channel-cut crystal that will a conduct a beam of dimen-
sions 3×3 mm2 at any monochromatic photon energy be-
tween the K absorption edges of the 3d transition elements
through Cu, Zn, and Ga. The separated-function design
allows both the spacing between the diffracting surfaces
to be adjusted as well as the offset between the centers
of the two crystals, so that a beam of any energy within
the above range will be fully intercepted by both crystal
surfaces. Furthermore, the two crystals may be rotated to
suppress any spurious reflections, a feature not possible
with the channel-cut design.

The two crystals are held in the (1,-1) orientation, as
shown in Fig. 3.1 and in greater detail in Fig. 3.2, by
mounting each on a stage that provided three rotational
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axes (tilt, surface-normal, and Bragg) and two transla-
tional motions (surface-normal and beam line axis). The
stage consists of a HuberTM 1006(a) goniometer head,
which provide the translational motions and the tilt and
surface-normal rotations, attached to an OrielTM rota-
tor with Motor MikeTM attachment, which provides the
Bragg rotation. The DC motor-controlled Bragg rota-
tional precision of the Oriel rotator was reported by the
manufacturer to be ca˙ 0.12 arc-seconds (0.6 µ-radians).

The spacing between the two Ge111 flat crystal surfaces
was fixed at 10 mm by mounting the crystals on the DCD
analyzer monolith. The DCD analyzer was attached to a
DaedelTM rotary table on the beam line hutch mechani-
cal arm. The effective stepper motor-controlled rotational
precision of the rotary table is 0.6 arc-seconds (2.9 µ-
radians) which is obtained using a gear reducer. Three
translational motions are provided by the hutch mechani-
cal arm.

After fine-tuning each of the two crystals in the ana-
lyzer in turn to the photon energy of the monochroma-
tor, all DC motors were disconnected to prevent acciden-
tal disturbance of the alignment. At this time, the two
crystal surfaces are nominally parallel. During a scan, the
entire DCD analyzer was rotated as a monolithic struc-
ture by step-scanning the Daedel rotary table about an
axis located at the center of the monolith. The center of
the diffracting surface of the first analyzer crystal is posi-
tioned exactly on this axis of rotation. The angle of rota-
tion between the incident beam and the crystal surfaces is
defined as θ. The center of the rocking curve, as measured
from the data, is defined as θo.

Experimental SAXS scans were conducted in a pro-
gression of sample – empty – sample so that each sam-
ple scan has an adjacent empty scan, ensuring that any
instabilities in the source, such as the position of the
stored electron beam orbit, will have minimal influence
on the SAXS measurements. After the progression of
three scans was complete, the monochromator energy was
tuned to the next photon energy and the progression was
repeated for the same two samples. It is possible to re-
position the sample in a precise manner so the same sam-
ple volume is always measured.

Each scan was broken up into segments of fixed step-
size. Data from three to five overlapping segments com-
prise one complete scan which required approximately
30-40 minutes to complete. One segment was always

made to include the central peak so that an accurate value
for the center of the rocking curve, θo, would be avail-
able from the data. For those scan segments which do not
pass directly through θo, it was still possible to estimate a
value for θo by overlapping the intensity region with the
central peak segment. One complete SAXS curve was the
result of scans with the sample both in and out, therefore
between six and ten segments were required to define the
small-angle scattering curve for a single sample.

3.4 Silicon Photodiode X-ray Detec-
tor

The scattered X-ray beam was measured by means of a
photodiode detector circuit designed with the assistance
of the electronics staff of the Chemistry Department,
Northwestern University, especially the late Jim Baker. In
a SAS experiment, it is necessary to cover many orders of
magnitude of intensity to profile, including both the SAS
and the main beam. Existing detectors (gas proportional
counters, scintillation counters, lithium-drifted silicon de-
tectors) were found to be inferior in this regard as none of
these could measure an unattenuated synchrotron beam,
hence a new approach was taken. Although ionization
chambers have been used historically to measure the full
synchrotron beam, they were also rejected for this task
due to poor detection efficiency and noise. Complete elec-
trical schematics of this detector with its custom-designed
electronics appears in an appendix to this dissertation.
The detector made use of an unbiased EG&G photodiode
(#UV-215-BQ) designed for ultraviolet radiation. Typi-
cal currents measured in the SAS experiments were of the
order of 100 fA to 1 µA. The noise of the photodiode de-
tector is about 60 fA, established by the Johnson noise of
the electrometer operational amplifier. This noise limits
the sensitivity of this photodiode detector to a few hun-
dred 6 keV photons per second.

In a double-crystal diffractometer with a fixed spac-
ing between the two crystals, the offset distance be-
tween the entrance and exit beam will vary slightly
('1 mm·degree−1) as a function of rotation angle. The
photodiode detector was translated vertically as a func-
tion of analyzer rotation angle such that the X-ray beam
always intercepted the same position on the detector. To
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Figure 3.2: View towards the detector of the double-crystal diffractometer analyzer monolith. The attachment to the
rotary stage on the beam line mechanical arm is on the right. Each crystal is mounted on an L-shaped support, attached
to a HuberTM 1006(a) goniometer stage which is, in turn, mounted on top of an OrielTM precision rotator. All motions
on the monolith are controlled by DC motors that are not connected to the beam line computer.

accomplish this, the detector was mounted on a rotary ta-
ble connected to the second set of three translational mo-
tions on the hutch mechanical arms.

3.5 Computer Data Acquisition

The MINCTM computer controls the operations of most
of the hardware on beam line X23A3. The MINCTM in-
structs the monochromator to tune to a particular photon
energy. The monochromator is then left undisturbed for a
set of scattering measurements. The MINCTM computer
was also used to step-scan the DCD analyzer monolith to
perform the SAXS measurements. During a single step,
the MINCTM records the counts acquired in a fixed time,
t, from the monitor ionization chamber, M , and the pho-
todiode detector, D. The amplification, A, of the photo-
diode detector is controlled manually using a hand-held
remote control. The dark noise, d, in the photodiode de-
tector is measured when there are no X-rays incident on
the monochromator.

3.6 Data Reduction

Columns of DCD analyzer angle, detector counts, and
monitor counts comprise the data that are recorded by the
beam line MINCTM computer. Each scan is recorded and
stored as one data file. Also included at the top of each
file is the counting time (coded as a 12-bit integer) which
is constant for each angle in the file. The files of about
6000 text characters each were copied from the MINCTM

printer port to the Macintosh modem port over a serial
interface (RS-232C) by issuing a print command on the
MINCTM. The MockTerminal version 4.3 terminal emu-
lation software was used on the Macintosh to record and
store the incoming text. An additional column of detector
range number was added to each data file. After adding
the detector ranges manually, the files are then in a format
to be read by a custom-designed, graphically-oriented, re-
lational database software package for the Macintosh ti-
tled SAXS Reduction, which converts the columns de-
scribed into typical SAS data. This software runs on an
Apple Macintosh SE using the Finder system software
version 6.0.2. It is not presently compatible with the Mul-
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tiFinder system software. The source code is in Think’s
Lightspeed C, version 3.02p.

3.7 Raw Data
DCD angle, θ, is converted into scattering vector (actually
scattering vector magnitude) by

h =
4π
λ

sin
(
θ − θo

2

)
(3.1)

where θo is the observed center of the rocking curve. The
ratio, R(h), of detector counts, D, in time, t, to monitor
counts, M , corrected for detector range dark current, dr,
and adjusted for detector range amplification, Ar, mea-
sured at each different h, is

R(h) =
Ar [D(h)− τdr]

M(h)
. (3.2)

The intensity ratio, R(h), is a superposition of the small-
angle scattering from the sample, small-angle scattering
from the KaptonTM and beryllium windows between the
monochromator and the DCD analyzer, convolution of
the X-ray source profile with the rocking curves of the
monochromator and DCD analyzer crystals, and parasitic,
background scattering of the X-ray beam in the 285 mm
air path between the sample position and the detector. The
source convolution will be shown later to be negligible.
At θo, the double crystal analyzer conducts the full inten-
sity of the unscattered beam which is the Io apparent at
the detector, so the sample transmission,

Ts =
Rs(0)
Re(0)

, (3.3)

where Rs(h) and Re(h) are the curves measured for the
sample and empty beam, respectively, normalized to a
constant monitor count rate. The empty beam is a scan
which is the same as a SAXS scan in every regard except
that the sample is removed.

It may be assumed that all effects except the scattering
from the sample and a small additional background will
be found in both Rs and Re. The instrumentally-smeared
small-angle scattering plus small additional background
in arbitrary units is then separated by scaling the sample

data by its transmission factor and subtracting the empty
beam, as

Ĩ(h) = Rs(h)− TsRe(h). (3.4)

3.8 Absolute Intensity Conversion
Conversion of the scattering data into differential cross-
section in units of m−1 involves measuring the ratio of
the number of photons scattered per second into unit solid
angle to the number of photons in the incident beam. The
as-measured slit-smeared intensity profile in ph·s−1,

Ĩ(h) = ΦoAtTεΩ
dΣ̃
dΩ

(h), (3.5)

is measured by a detector with efficiency, ε, and subtend-
ing a solid angle, Ω, with the sample. Φo is the incident
flux in ph s−1 area−1 illuminating an area, A, on the sam-
ple and dΣ̃/dΩ(h) is the slit-smeared differential scatter-
ing cross-section per unit volume per unit solid angle. The
measured transmission is given by T = e−µt where µ is
the linear absorption coefficient.

With the double-crystal instrument, the same detector,
of area a where a > A, that measures Ĩ(h) is used to
measure ΦoA with the sample removed from the instru-
ment, so the detector efficiency cancels and primary con-
version of the measured intensity into units of dΣ̃/dΩ(h)
involves only the measurement of t, T , Ω, and ΦoA. That
is, the slit-smeared SAXS in absolute units measured by
the double-crystal instrument is

dΣ̃
dΩ

(h) =
Rs(h)/Ts −Re(h)
Re(0)∆θw∆θlt

(3.6)

where ∆θw and ∆θl, which define the detector solid an-
gle Ω, are the angular width and length of the beam in-
tercepted by the detector. In a SAXS camera that utilizes
geometric collimation with a concomitantly small illumi-
nated area,145 the solid angle is defined by the area of the
beam on the detector element, ∆a, and the distance be-
tween the sample and detector, r. However, in the double-
crystal instrument, the angle in the scanning direction is
more highly-collimated by the rocking curve of the crystal
optics. Therefore, ∆θw is measured from the experiment
as the full width at half maximum of the empty beam.
With no crystal optics in the slit-length direction, ∆θl is
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defined in the geometric sense. For a large illuminated
sample area defined by the width and length of the source
slits, where A = WS × LS , and a detector diameter of
LD, where LS < LD,

∆θl =
LD + LS

2r
+
LD − LS

2r
=
LD

2r
(3.7)

The detector diameter (diameter of the active area of the
photodiode) is 5.5 mm and the sample-to-detector dis-
tance was 280 ±5 mm. The additional distance due to
the double reflection in the analyzer is negligible with re-
spect to this error. Thus it is evident that although primary
calibration usually requires special equipment, a standard
sample, and can be difficult and time-consuming to per-
form, the present instrument requires no additional beam
time for calibration since all of the parameters are avail-
able in the normal course of performing scattering mea-
surements.

3.9 Slit-Length Desmearing
The measured data was corrected for smearing in the slit-
length direction by the method of Lake81 as explained ear-
lier. The desmearing of the measured data was performed
iteratively until a plot of the standardized residuals be-
came featureless as a function of scattering vector or data
point index number. In this section, the small-angle scat-
tering will be referred to as Ĩ . The standardized residual,

z =
(
Ĩo − Ĩi

)
÷ σo, (3.8)

is the statistically weighted difference between the mea-
sured intensity data, Ĩo, and the smear of the ith itera-
tive trial solution, Ĩi, divided by the reported error on the
measured intensity, σo. To illustrate, Fig. 3.3a and 3.3b
are a pair of plots excerpted from the screen output of
a desmearing session. Fig. 3.3a shows the standardized
residuals of the third trial solution, Ĩ3. Fig. 3.3b shows
the standardized residuals of the fourteenth trial solution,
˜I14, which is accepted as the desmeared data.

3.10 Size Distribution Analysis
The desmeared data was analyzed in terms of a size dis-
tribution from a dilute concentration of non-interacting,

homogeneous scatterers by the maximum entropy tech-
nique, as implemented by Daniell and Potton105 in the
FORTRAN code Maxe.FOR. An adaptation of this code,
MaxSas.FOR was made to enable the analysis of SAS
data from the double-crystal diffractometer.

Because of the oscillations in the distributions per-
ceived to be a result of the Skilling and Bryan implemen-
tation of the maximum entropy algorithm as described in
the theoretical section, the form factor used to model the
particles was modified to a less oscillatory form. The stan-
dard form factor (squared) for spheres,

F 2(h, r) = 9(hr)−6 [sin(hr)− (hr) cos(hr)]2 , (3.9)

was modified to minimize the effect of the cosine waves
as hr becomes much larger than one. In this case, the
completely damped form factor averages to the Porod de-
pendence,

P (h, r) =
9
2
(hr)−4. (3.10)

The cosine waves are harmonics of the particle dimen-
sion and thus provide useful information in the size anal-
ysis. However, the problem with the Skilling and Bryan
method is a sensitivity to strong gradients in the form fac-
tor such as these cosine waves. An abrupt transition be-
tween F 2 and P would provide a strong gradient and so
an empirical weighting function was conceived that would
provide a smooth transition from the form of F 2 to the
form of P while retaining some of the cosine waves of F 2.
Empirically, it was determined that at least ten percent of
F 2 should remain in the modified form factor (ν = 0.9)
at all times and that the transition, ψ = (hr)transition,
between F 2 and P should occur at ψ ' 8. For hr << ψ,
there should be no modification of the standard form fac-
tor for spheres. A weighting function incorporating these
features is

W (h, r) = (1− ν) + ν exp

[
−

(
hr

ψ

)2
]
. (3.11)

Using this weighting, the modified form factor for
spheres,

F̂ 2(h, r) = WF 2 +
1−W

1 + 1/P
, (3.12)

damps 90% of the cosine oscillations in the Porod region.
The last term is written to prevent P from dominating
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Figure 3.3: Plot of the standardized residuals as a function of data point sequence number after completion of (a) three
iterations and (b) fourteen iterations of the Lake desmearing technique. Note the strong feature in (a) indicating a
poor fit between the smear of the iterative trial solution and the measured data while in (b), that feature has dissipated.
The ===== bars indicate plus one and minus one standard deviation using the error estimated by shot noise counting
statistics.
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the result as hr goes to zero. Application of two limit-
ing cases shows that

lim
hr→0

F̂ 2(h, r) = F 2(h, r) (3.13)

and

lim
hr→∞

F̂ 2(h, r) = 0.1F 2(h, r) = 0.9P (h, r). (3.14)

Use of F̂ 2(h, r) to analyze scattering data calculated from
synthetic distributions shows that it models the scattering
exactly as intended, delivering a good approximation of
the synthetic distribution with the correct volume fraction
and no ill side-effects. This modified form factor was used
to model the scattering from the features in both of the
steel alloys examined in this dissertation.

Some of the samples, the Modified Fe9Cr1Mo steels
for example, were known by other techniques to contain
several different types of scatterer, each with its own scat-
tering contrast. For the purposes of size distribution anal-
ysis, the scattering from these samples was analyzed for
a size distribution weighted by the scattering contrast of
all scatterers. As a result, the relative heights of peaks in
the scattering strength size distributions cannot accurately
reveal the relative amounts of each scatterer without addi-
tional information on the scattering contrast. This subject
is treated in the ASAXS scattering contrast analysis be-
low.



Chapter 4

Results and Discussion

The first section will describe the manner in which the
new DCD SAXS camera and silicon photodiode X-ray de-
tector was tested. Then, the principal results for steel will
be given: first the Modified Fe9Cr1Mo alloy, then the
AF1410. Several types of small-angle scattering curves
will be presented and will be referred to by type as fol-
lows: type 1) scattering from features of uniform size;
type 2) scattering from features with a broad distribution
of sizes and negligible feature-to-feature scattering; type
3) scattering from a regularly-spaced arrangement of fea-
tures such that interference effects exist.

4.1 Validation of Equipment

For any newly-developed piece of scientific equipment, it
is necessary to subject it to tests to verify that the equip-
ment will return the correct answers. The double-crystal
diffractometer SAXS camera is sufficiently complex that
several different types of test were applied. Scatterers of
known size were used to verify the angular scale and to
demonstrate the improvement in detection capability pro-
vided by the silicon photodiode detector. Finally, as a
comparison, samples that were examined by means of the
double-crystal diffractometer SAXS camera were also ex-
amined by means of other SAXS and SANS cameras in
other laboratories using their own secondary methods of
calibration to absolute intensity.

4.1.1 Polystyrene Spheres: 255 and 460 nm
diameters

The scattering from polystyrene spheres was measured
from several samples and was found to exhibit both type 1
and type 3 scattering behavior. For samples that are nearly
monodisperse, the intensity profile assumes a characteris-
tic shape of peaks (secondary maxima), typical of type 1
scattering, which are regularly-spaced in h. The average
spacing of these peaks, ∆h, is related to the mean sphere
diameter, D̄, by the relation

∆hD̄ = 2π. (4.1)

However, for h < ∆h, type 3 scattering (interference ef-
fects) were clearly observed, indicating that the spheres
were densely-packed.

The samples were prepared from liquid suspensions
of reported polydispersity σ(D̄)/D̄ ' 1%, where σ(D̄)
defines the width of the Gaussian distribution as in
exp

[
−(D − D̄)2/2σ2(D̄)

]
. Drops were placed in the

center of a piece of transparent tape substrate and dried,
creating a densely-packed cake of uniform diameter
spheres. The cakes could be suspended on edge by fixing
the tape to a metal sample support ring. The scattering
profile of the tape substrate was observed to be insignifi-
cant compared to the scattering from the cake of spheres.
Cakes were prepared from spheres of reported diameter
240, 255, 460, 655, and 804 nm.

The scattering from the 255 nm and 460 nm spheres are
reported here. The thickness of each cake is not uniform,
making conversion of the SAXS intensity into absolute
units impossible. In Fig.s 4.1 and 4.2, the collimation-
corrected SAXS in arbitrary units is plotted as a function

41
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Figure 4.1: Collimation-corrected SAXS intensity in arbi-
trary units from a sample of uniform diameter polystyrene
spheres of reported diameter 255 nm. The measured di-
ameter is 267 nm with a Gaussian σ of 9 nm. Note the
interference effects at very low scattering vector. The ex-
perimental data is shown in open circles, the SAXS cal-
culated from the Gaussian distribution model is shown as
the solid line.

Figure 4.2: Collimation-corrected SAXS intensity in arbi-
trary units from a sample of uniform diameter polystyrene
spheres of reported diameter 460 nm. The measured di-
ameter is 477 nm with a Gaussian σ of 4 nm. Note the
interference effects at very low scattering vector. The ex-
perimental data is shown in open circles, the SAXS cal-
culated from the Gaussian distribution model is shown as
the solid line.
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Table 4.1: Parameters of the model Gaussian distribution
for polystyrene spheres samples.

spheres sample 255 nm 460 nm
D̄ 267 ± 9 477 ± 4

σ(D̄) 9 ± 1 4 ± 1
polydispersity 3.4% 0.8%

of h against the SAXS calculated from a Gaussian dis-
tribution of spheres as open circles. The fit of the model,
drawn as the solid line, with the experimental data is quite
good. This provides a measure of confidence in both the
experimental equipment that recorded the data and the
method by which the raw data were reduced to a SAXS
profile. Note the interference effects at very low scatter-
ing vectors in each figure. Table 4.1 gives the parameters
of the Gaussian distribution for each sample.

It is evident that type 3 (interference) scattering is
present for both samples although it is much stronger for
the 255 nm spheres. The observed intensity for this sam-
ple was lower than that of the 460 nm sample, indicat-
ing greater absorption due to a greater thickness. Such an
increase in thickness would increase the effects of parti-
cle interference, as observed. Also, the polydispersity is
greater for the 255 nm spheres; this is directly seen as a
reduction in the sharpness of the secondary maxima for
h > 0.15 nm−1.

While the SAXS is closely approximated by the scat-
tering calculated from a Gaussian-shaped distribution of
low polydispersity, as seen from Fig.s 4.1 and 4.2, an at-
tempt was made to analyze the SAXS using the maximum
entropy size technique described elsewhere in this thesis.
The code was not able to converge upon a distribution
close to the reported size, even when the region of SAXS
with particle interference effects was removed. This fail-
ure may be viewed as a limitation of the code to resolve
such a narrow, well-defined distribution and not the max-
imum entropy technique itself. The conclusion is that the
MaxSas.FOR code should be applied to samples with a
polydispersity greater than a few percent.

A finite amount of polydispersity was required for each
distribution so that its calculated scattering would fit the
measured data that had been corrected for collimation.
Delta-function size distributions provide deep valleys in
the intensity curve between the secondary maxima. By

adding some width to the distributions, the fit improves
remarkably. Bonse and Hart, in their analysis of very sim-
ilar scattering curves,10 did not consider distribution poly-
dispersity but demonstrated that the valleys were filled in
by multiple scattering from a thick sample consisting of a
close-packed array of spheres, such as exists in the caked
samples. While such an explanation is valid, it is also pos-
sible that the spheres have a slight polydispersity and that
this polydispersity may be the primary cause of the loss
of sharpness in the valleys between the secondary max-
ima. Asphericity, as shown in Fig. 1.a on page 169 in
Glatter and Kratky,43 could cause some broadening of the
secondary maxima leading to valleys that are more shal-
low. The spheres used, both in this study and in that of
Bonse, were prepared on Earth and are probably aspher-
ical on account of gravitational effects. That this could
have some effect on the measured scattering could by
tested by comparing the scattering from spheres prepared
on Earth with that from spheres prepared in space. Such
spheres already exist from one of the NASA space shut-
tle missions. In conclusion, the shallowness of the valleys
between the secondary maxima are most probably due to
(in order of decreasing importance) polydispersity, multi-
ple scattering, and asphericity.

4.1.2 Silicon Photodiode Detector vs. Scin-
tillation Counter

A demonstration of the marked improvement in the qual-
ity of SAXS data directly attributable to the silicon photo-
diode detector (PD) is shown in Fig.s 4.3 and 4.4, in which
are plotted the detector counts (normalized to a constant
monitor ionization chamber) versus h. The curves are a
superposition of the SAXS from the sample of 460 nm
polystyrene spheres onto the rocking curve of the double-
crystal diffractometer optics. Neither curve was corrected
for collimation effects in Fig.s 4.3 and 4.4. The data in
Fig. 4.3 were taken over the course of eight hours with
a scintillation counter (SC), attenuated by aluminum fil-
ters for |h| < 0.05 nm−1. The optics for this experi-
ment were a flat Si111, two-reflection monochromator and
a one-reflection analyzer. Fig. 4.4 shows SAXS data from
the same sample, taken in forty minutes, with the PD and
flat Ge111 optics, a two-reflection monochromator and a
two-reflection analyzer. The difference in the optics of the
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two experiments is visible only in the width of the central
peak of the data, as is shown in detail later by Fig. 4.7 and
4.8.

Nine maxima are visible in the data recorded by means
of a SC after which the peaks are lost in the background,
whereas data collection was stopped after twenty-three
secondary maxima were observed with the PD. Both
curves, after collimation-correction, reveal that the mean
diameter of spheres is 477 nm. It is difficult to discern
from these plots the region of overlap between scan seg-
ments. Several different scan segments comprise each
curve, each segment with a different fixed step size, ∆θ,
and a different starting position. With each new start-
ing position, it is possible that the angular rotation of the
double-crystal diffractometer analyzer suffers a small me-
chanical backlash shift on the order of 0.0003◦which may
be corrected later by numerically shifting the entire seg-
ment along the angular scale. Corresponding to each scan
segment may be, depending on the intensity, a different
amount of filter-attenuation (for the SC), or a different
sensitivity scale (for the PD). Using the PD, it is possi-
ble to align the different scan segments more precisely
in angle than with the SC because of the greater preci-
sion to which the intensity is measured. In fact, the PD
enabled the diagnosis and correction of operations of the
beam line mechanics that had gone unnoticed in prior ex-
periments with the SC. Additionally, it was not necessary
to correct the output of the PD for dead-time or linearity.

4.1.3 Absolute Intensity Correlation
The method by which the data are placed onto an abso-
lute scale of intensity was tested by several different tech-
niques. The most satisfying test would be to measure the
SAXS from a sample of known distribution and amount
of scatterers. For use as such secondary standards, sev-
eral different types of sample were proposed. In one such
method, (Gerold, et al., 1978) used a liquid suspension of
spheres with a well-known volume fraction and size. An-
other suggestion was to record the SAXS from Guinier-
Preston zones in an alloy of aluminum and zinc. Voids
in glassy carbon or colloidal silica56, 113, 114, 145 have been
accepted as secondary standards. A different test would
be to compare the data placed onto an absolute scale by
the primary method described above with the scattering
from the same sample reported by another laboratory. The

Figure 4.3: Intensity data recorded using a scintillation
counter. Superposition of small-angle X-ray scattering in-
tensity in arbitrary units from a sample of uniform diame-
ter polystyrene spheres of reported diameter 460 nm onto
the optics of the double-crystal diffractometer. The data
has not been corrected for collimation effects. Addition-
ally, the optics were Si111, two-reflection monochromator
and one-reflection analyzer. The data were recorded in
eight hours. Compare with Fig. 4.4.
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Figure 4.4: Intensity data recorded using a silicon photo-
diode detector. Superposition of small-angle X-ray scat-
tering intensity in arbitrary units from a sample of uniform
diameter polystyrene spheres of reported diameter 460
nm onto the optics of the double-crystal diffractometer.
The data has not been corrected for collimation effects.
The optics were Ge111, two-reflection monochromator
and two-reflection analyzer. The data were recorded in
forty minutes. Compare with Fig. 4.3.

comparison test was used to evaluate the primary calibra-
tion technique used.

Six samples of Modified Fe9Cr1Mo steel, each aged
at a different temperature for 5000 hours, were sent to
the National Center for Small-Angle Scattering Research
at Oak Ridge National Laboratory for measurement on
the 10 meter X-ray pinhole camera.57 The absolute in-
tensity calibration method used was a secondary calibra-
tion with the scattering from polyethylene. While the ex-
perimental arrangement is significantly different from the
double-crystal diffractometer, the absolute intensities of
the Oak Ridge data are in agreement, within the scatter of
the data, with the primary method described above for all
six samples examined. In Fig. 4.5 are plotted the SAXS
from one of the six Modified Fe9Cr1Mo steel samples as
measured on both instruments. The scattering contrast of
the most abundant scatterer, Cr23C6, is nearly identical
for the 17.44 keV photons in the Oak Ridge data and the
6 keV photons of the DCD data. Small-angle scattering
from five samples of colloidal silica / potassium silicate,
described in Appendix A, were measured on the double-
crystal diffractometer camera and on the 8 m SANS pin-
hole instrument installed at the 20 MW research reactor at
the National Institute of Standards and Technology. The
SANS camera makes use of a helical channel velocity se-
lector to choose the incident neutron wavelength where
the wavelength resolution, defined as ∆λ/λ, is 0.25. The
mean wavelength for these measurements was 0.6 nm.
A detailed description of the SANS facility is given by
Glinka, et al.44

After correcting the SAXS data for slit-length smear-
ing, adjusting the SANS data by the ratio of |∆ρ|2 for
X-rays and neutrons, and subtracting the experimental
backgrounds, excellent agreement is obtained, as shown
in Fig. 4.6. This test is a more rigorous evaluation of the
entire experimental procedure than is the previous one, as
even the incident radiation is different. No other scaling
has been applied. Similar agreements between SAXS and
SANS may be found in the other four samples.

4.1.4 Slit-Width Correction
The SAXS from the 460 nm polystyrene spheres, pre-
sented above, is also useful to demonstrate the effect of
the slit-width instrumental smearing. The primary differ-
ence between Fig.s 4.3 and 4.4 demonstrated the supe-
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Figure 4.5: Comparison of absolute intensity scales for
the SAXS from a sample of the Modified Fe9Cr1Mo steel.
While the incident photon energies used are very differ-
ent, 17.44 keV for the Oak Ridge data versus 5.789 keV
for the DCD data, the |∆ρ|2 of the most abundant scat-
terer, Cr23C6, is nearly identical in each case. The open
symbols correspond to the Oak Ridge data, the closed
symbols to the DCD data.

Figure 4.6: dΣ/dΩ(h) for SAXS (circles) and SANS (tri-
angles) from a sample (10% colloidal silica / 90% potas-
sium silicate) of bulk microporous silica. The SANS data
have been scaled by the ratio of the X-ray-to-neutron scat-
tering contrast.
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rior performance of the silicon photodiode detector over
that of a scintillation counter. These two data sets were
measured from the same sample but were taken some 33
months apart. In Fig. 4.7, the rocking curve of the optics
is emphasized, using the same data plotted together. The
width of the rocking curve of the experiment with germa-
nium optics is about three times that of the silicon optics
experiment. Consequently, the incident photon flux on
the sample is greater in the experiment with germanium
optics. In the region of scattering vectors where the first
secondary maximum is observed, at h ∼ 0.013 nm−1,
the two coincide. At scattering vectors greater than h ∼
0.013 nm−1, the two curves are identical except that the
counting statistics are much better in the experiment with
Ge optics because a silicon photodiode X-ray detector was
used. To demonstrate how the difference in optics affect
the measurement of the SAXS, Fig. 4.8 shows the region
of overlapping data for both experiments, starting with the
first secondary maximum at top-left.

The Si optics / scintillation counter data is noisy about
the quiet Ge optics / photodiode data but both curves
show the same profile. Uncertainties in the filter attenua-
tion correction and linearity correction for the scintillation
counter data may explain why the intensities differ to the
left of the first secondary maximum in addition to prox-
imity to the incident beam. The slit-width instrumental
smearing is a convolution along the h-axis of the SAXS
from the sample with the rocking curve of the analyzer. If
the smearing is significant, features would be seen to be-
come less sharp. The softening of the second secondary
maximum for the Ge optics data is significant and may be
due to the increased slit-width but this is the only place on
the curve where such an effect may be observed.

The last difference to be noted between the two exper-
iments concerns the number of crystal reflections in the
analyzer. In the Si optics experiment, only one reflection
was used while in the Ge optics experiment, two reflec-
tions were used. As has been noted before by Bonse,10

the tails of the rocking curve will fall off proportional to a
power that is twice the number of reflections. For an ana-
lyzer with only a single reflection, the rocking curve tails
fall off as h−2 while the SAXS measured with a DCD
decreases by h−3 and it is possible for the rocking curve
tail to dominate the SAXS data from weakly-scattering
samples. By using an analyzer with at least two reflec-
tions, this problem is avoided. With regard to the data

Figure 4.7: Magnification of the SAXS from 460 nm
spheres shown in Fig.s 4.3 and 4.4, showing the ef-
fect of the DCD optics (germanium or silicon) on the
central peak. The slit-width for the Ge optics (recorded
with a photodiode detector) is ∼ 3× that of the Si optics
(recorded with a scintillation counter).
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Figure 4.8: Magnification of the SAXS from 460 nm
spheres shown in Fig.s 4.3 and 4.4, showing the effect
of the DCD optics (germanium or silicon) on the mea-
sured SAXS. The slit-width for the Ge optics (recorded
with a photodiode detector) is ∼ 3× that of the Si optics
(recorded with a scintillation counter).

presented, this particular sample was a strong scatterer so
that at no point within the measured h-range did the tails
of the rocking curve in either experiment dominate the
SAXS data from the sample.

In summary, experiment has shown that a correction for
slit-width instrumental smearing is not necessary. Addi-
tionally, utilization of Ge optics and an asymmetrically-
cut first monochromator crystal has improved the quality
of data from the instrument without compromising reso-
lution.

4.2 Modified Fe9Cr1Mo Steel
The measurements of the SAXS from the Modified
Fe9Cr1Mo steel will be described. Multiple-photon en-
ergy (wavelength) ASAXS experiments were conducted
to accentuate the scattering from Cr23C6 precipitates.
From these experiments, size distributions of the Cr23C6

were deduced via the maximum entropy method and mak-
ing use of calculated scattering contrasts. Because preci-
sion calculations of the scattering contrast are essential to
the ASAXS analyses, the anomalous dispersion correc-
tions of chromium were determined using transmission
measurements near the Cr K absorption edge.

4.2.1 Sample Thickness Measurements
In SAXS experiments, measurement of the sample thick-
ness is crucial to accurate scaling of the intensity onto an
absolute scale. The optimum thickness of steel SAXS
samples near the Cr edge is 15 to 20 µm which is diffi-
cult to measure by direct methods. Using a precision mi-
crometer, calibrated against foils of known thickness, the
sample thickness may be measured to ±5µm. This 25%
precision of measurement, passed directly to the SAXS
absolute intensity scale, is not acceptable for ASAXS ex-
periments. Traditional absolute intensity scale calibra-
tion methods113, 114, 145 are much better, within 5%. Fur-
thermore, while precision micrometers measure a thick-
ness over the area of the platens, that value is the maxi-
mum thickness and does not indicate variation or unifor-
mity. It is possible to measure the thickness of the sam-
ple by transmission measurements, but imprecision in the
knowledge of the mass absorption coefficient is problem-
atic with a measurement using a single photon energy.
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Table 4.2: Thickness, µm, of the Modified Fe9Cr1Mo
steel SAXS samples. All thicknesses are ±0.3 µm.

sample thickness
N&T 24.3 µm

482◦ C 24.6 µm
538◦ C 17.5 µm
593◦ C 21.3 µm
649◦ C 16.8 µm
704◦ C 22.3 µm

With experiments conducted on six steel samples, each
at three photon energies, it was possible to determine the
sample thicknesses in a direct, statistical method from the
SAXS experiments by using the sample transmission, Ts.
Measurements of Ts were taken from all ASAXS scans.
Each of these measurements is related to the energy-
dependent mass absorption coefficient, µm(E), and to the
sample-dependent thickness, t. Because all samples are of
the same composition, they will have equivalent µm(E).
Initially, values for µm were calculated from the compo-
sition for each energy. These were then combined with
Ts and the mass density, ρm, calculated from the compo-
sition, to get t. The three values of t obtained for each
sample were then averaged and used to reverse-calculate
new values for µm. The six values of m obtained for
each energy were then averaged and fed back in to get
t again. This back-and-forth method was iterated to min-
imize the least-squares deviations of calculated Ts. With
this method, the thickness of each sample, spatially aver-
aged over the 3×3 mm2 illuminated area, was determined
to ±0.3 µm as reported in Table 4.2. The thickness of
the N&T sample used for the measurement of the disper-
sion corrections was determined as part of this six sample,
three energy grid. Prior to the thickness measurements,
each sample was inspected by X-ray transmission radio-
graphy using the experimental equipment available at the
X23A3 beam line. These measurements were performed
by viewing the absorption contrast at 6 keV using a televi-
sion camera in place of the double-crystal diffractometer
analyzer. The illuminated area of each sample was ad-
justed by moving either the sample or the slits until an
area of even contrast was observed.

4.2.2 Measurement of Anomalous Disper-
sion Corrections

In order to predict how the contrast for a precipitate would
change with photon energy, the dispersion corrections f ′

and f ′′ were calculated for all the elements in the reported
composition of Modified Fe9Cr1Mo using the method of
Cromer and Liberman,21 which will be referred to below
as CL. For precise work though, it is preferable also to
measure the dispersion corrections from the sample to be
studied. Because it was not expected that the dispersion
corrections would differ significantly between samples of
the same material, only one sample was measured. Also,
because the ASAXS work was to be done only at energies
near the chromium K edge (5989 eV), only the dispersion
corrections near the Cr K edge were measured.

The data collection method is the same as that for
an Extended X-ray Absorption Fine-Structure (EXAFS)
measurement. The ratio of intensity transmitted through
a sample to the intensity incident, I/Io, is measured as
a function of photon energy by measuring the intensity
in detectors placed before and after a sample as the pho-
ton energy is step-scanned. The energy range required for
measurement of the dispersion corrections may be larger
than that for EXAFS because the limits on the Kramers-
Kronig integration are infinite. To minimize the number
of energies required to span the range, small energy steps
were taken near the Cr K edge while the step size was
increased further from the edge.

The sample used for this measurement was in the N&T
condition (1038◦ C for 1 hr, air cool / 760◦ C for 1 hr, air
cool). All measurements were normalized for the decay of
the stored electron beam in the storage ring, as measured
in the exit ionization chamber in the monochromator box.
The N&T sample was placed in the beam between the
beryllium window and the He transport tube and the in-
tensity of the transmitted monochromatic beam was mea-
sured as a function of photon energy using the ionization
chamber in the He transport tube. The ratio of intensities
in the two detectors, I/Io, is equal to the sample trans-
mission, Ts, and is shown in Fig. 4.9.

The strong vertical feature at 5.989 keV is the K ab-
sorption edge of Cr. Inflections in the transmission curve
in the region of the absorption edge were used to cali-
brate the energy scale of the monochromator by compar-
ison with a secondary standard curve (EXAFS Materials,
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Figure 4.9: Transmission coefficient, I/Io, of a normal-
ized and tempered Modified Fe9Cr1Mo steel as a function
of X-ray energy in the vicinity of the Cr absorption edge
(5.989 keV).

1988) for pure chromium which was, in turn, calibrated
against published tables of binding energies.4 Four inflec-
tion points were matched over a range of 20 eV to fix the
energy calibration to within 1 eV. The energy bandpass of
the Ge optics was ∼ 3 eV.

At 6.539 keV, a small shift is seen which may be due
to the K edge of Mn (0.46% weight). The margin of error
in the intensities, due to counting statistics, is comparable
with the size of the plotted symbols. An EXAFS analysis
of the fine structure above the Cr K edge would not be di-
rectly relevant to an ASAXS measurement of the Cr23C6

population because the EXAFS comes from all the Cr in
the sample, not just that in the precipitates.

By calculating the mass density from the reported com-
position and obtaining the thickness as above, the mass
absorption coefficient, µm, for the sample was calculated,
and is shown in Fig. 4.10.

Using the reported composition and the mass absorp-
tion coefficients calculated by the CL method for all el-
ements except Cr, the mass absorption coefficient of Cr
was calculated and is plotted in Fig. 4.11 against the value
calculated by the CL method. Good agreement is found
between data and the theoretical calculation of CL. It is
obvious that the CL method does not account for the solid-

Figure 4.10: Mass absorption coefficient of a normalized
and tempered Modified Fe9Cr1Mo steel as a function of
X-ray energy in the vicinity of the Cr absorption edge.

Figure 4.11: Mass absorption coefficient of Cr plotted as
a function of X-ray energy in the vicinity of the Cr K ab-
sorption edge. The solid curve is calculated by the method
of Cromer and Liberman.21 The points are derived from
transmission measurements on Modified Fe9Cr1Mo steel.



4.2. MODIFIED FE9CR1MO STEEL 51

Figure 4.12: Imaginary part of the anomalous dispersion
correction, f ′′, to the Cr scattering factor plotted as a
function of X-ray energy in the vicinity of the Cr K ab-
sorption edge. The solid curve is calculated by the method
of Cromer and Liberman.21 The points are derived from
transmission measurements on Modified Fe9Cr1Mo steel.

state physics effects giving rise to the EXAFS. The rela-
tionship between m and f ′′, given earlier in the section
covering ASAXS theory, is a proportionality also involv-
ing the photon energy. A plot of the measured f ′′ is given
in Fig. 4.12, along with the curve calculated by the CL
method.

Each evaluation of f ′ was made at an energy, E, sit-
uated halfway between the energies, ε, of available f ′′

values to avoid the singularity of E = ε in the Kramers-
Kronig integral. For the integration, f ′′ values were ex-
trapolated both below (to 1 keV) and above (to 425 keV)
the range of available data using the empirical constants of
McMaster.95 The limits on the range of integration were
taken at the suggestion of Hoyt, et al.62 Such extrapo-
lations fit experimentally-measured cross sections much
better than does a simple power law relation and take the
form of

f ′′ =
E

2rech
exp

[
3∑

i=0

ai(logE)i

]
(4.2)

where the ai are the energy-range dependent tabulated co-
efficients, re is the radius of an electron, c is the veloc-
ity of light, and h is Planck’s constant. The integrand

Figure 4.13: Real part of the anomalous dispersion cor-
rection, f ′, to the Cr scattering factor plotted as a func-
tion of X-ray energy in the vicinity of the Cr K ab-
sorption edge (5.989 keV). The solid curve is calculated
by the method of Cromer and Liberman.21 The points
are derived from transmission measurements on Modified
Fe9Cr1Mo steel via the Kramers-Kronig integral. The
energies used for the ASAXS experiments were 5.789,
5.949, and 5.974 keV.

was then evaluated at each available f ′′(e) and extrapo-
lated f ′′ and the resulting curve was then evaluated by the
trapezoid rule.

The calculated value of f ′Cr in the Modified Fe9Cr1Mo
steel versus corrected photon energy is plotted in Fig. 4.13
against the f ′ calculated by the CL method. A compari-
son of a magnification of the f ′Cr well from Fig. 4.13 with
figures 1, 3, and 4 of Hoyt,62 which concentrates on the
very near-edge region of f ′Ni, reveals that the f ′ wells
in both cases have a similar structure. Such a magnified
plot follows in Fig. 2.3 in comparison to the CL values.

The oscillations on the high energy side of the absorp-
tion edge at 5.989 keV are due to electron transitions into
discrete states, such transitions which are not addressed
by the CL calculation. That these oscillations are not as
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Figure 4.14: Magnification of Fig. 4.13 in the bottom re-
gion of the f ′(E) well.

well-defined as others which have been presented in the
literature62, 120, 139 is to be expected due to the ∼3 eV en-
ergy resolution of the germanium optics. The optics were
designed to improve upon the angular collimation of the
source for the benefit of small-angle scattering at a small
increase in energy bandpass. With narrow energy band-
pass, the oscillations would be more sharp, however the
curves presented represent the actual f ′, f ′′, and µm val-
ues available with the Ge optics used for the ASAXS mea-
surements. For the range of energies plotted, the agree-
ment with the CL curve is within ∼0.2 electrons overall
which is about the limit of precision for this measurement.
Adjustments to the sample thickness could cause a verti-
cal shift of 0.2 to 0.3 electrons62 as could inclusion of the
energy correction term.21 The general shape of the two
curves is the same for the energy region below the absorp-
tion edge important to SAXS and it is apparent that the en-
ergy scale has been calibrated, to within 1 eV. The exper-
imental values for the f ′ and f ′′ of Cr, measured from the
N&T sample of Modified Fe9Cr1Mo steel, will be used
to calculate the scattering contrast of the carbides in both
the AF1410 steel and the Modified Fe9Cr1Mo steel. The

Figure 4.15: Argand diagram showing the relation be-
tween the real and imaginary parts of the anomalous dis-
persion corrections of chromium at the K edge. X-ray
photon energy increases in a clockwise direction in even
1.9 eV steps. The energies of the ASAXS measurements
are indicated. The solid curve was calculated by the CL
method.

amount of Cr present in the AF1410 alloy (2% by weight)
is not sufficient to establish transmission data that may be
reliably converted into f ′. The CL method will be used
to calculate f ′ and f ′′ for the other elements and for Cr at
energies outside the range of the above plots. The Argand
diagram in Fig. 4.15 summarizes these results by plotting
the imaginary versus the real part of the dispersion cor-
rection. Regions for ASAXS and EXAFS experiments
are clearly marked, including those energies used in the
ASAXS experiments to be described.

4.2.3 Scattering Strength-Weighted Size
Distribution Analyses

Samples were prepared from each of the five aging tem-
peratures (482, 538, 593, 649, & 704◦ C) and from the
N&T condition. The N&T sample corresponds to a 5000
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hour aging at 25◦ C. SAXS from each sample was mea-
sured at three energies (5.789, 5.949, 5.974 keV) near the
Cr K edge, corresponding to 200 eV, 40 eV, and 15 eV,
respectively, below the Cr edge. Each individual SAXS
curve of collimation-corrected dΣ/dΩ vs. hwas analyzed
for a scattering strength-weighted distribution of spheri-
cal scatterers by the maximum entropy method described
earlier. The program used, MaxSas.FOR, was a modifi-
cation of the Potton code, Maxe.FOR, written to accept
the angular range of data from the double crystal instru-
ment as well as that from instruments with higher angular
ranges.

The Cr-ASAXS series from a typical Modified
Fe9Cr1Mo steel sample (aged at 482◦ C) is plotted in
Fig. 2.5. Each curve corresponds to an experiment at a dif-
ferent photon energy near the Cr K absorption edge. The
solid curves are the intensities calculated from the max-
imum entropy distribution. There is a distinct difference
between the curves which is systematic with the change
in the scattering factor of chromium. For clarity, the error
bars have been left off Fig. 4.16. Consult the appendix for
the values of the margin of error.

For the Modified Fe9Cr1Mo steel samples, the smallest
scattering vector, hmin, at which the SAXS was signifi-
cantly different from the rocking curve of the optics was
usually about 0.01 nm−1 while in a few cases it was as
low as 0.006 nm−1. The scattering vector at which the
SAXS met the background (with S/N ∼ 1), hmax, was
about 0.15 to 0.2 nm−1 although the data collection was
continued, in most cases, to h ∼ 1 nm−1, to collect a
good measure of the experimental background. To allow
MaxSas.FOR to make a good estimate of that experi-
mental background, hmax was taken as 0.4 nm−1. Be-
tween 150 and 200 experimental data points fall between
hmin and hmax. The range of dimensions visible from the
experimental data should be from 40 nm to 300 nm. The
peripheral vision of the experiment extends these limits by
about a factor of two in each direction although the infor-
mation content of that extension is less certain. The rock-
ing curve width defines the variation of scattering vectors
sampled at each h as ∆h = 0.0015 nm−1.

The complete set of SAXS curves are presented as an
appendix to this dissertation. The errors, as estimated by
the desmearing program Lake.FOR, were increased by
30 to 50% for MaxSas.FOR to converge upon a solu-
tion. This corresponds to additional error propagation due

Figure 4.16: SAXS from a sample of Modified Fe9Cr1Mo
steel aged 5000 hours at 482◦ C. For each curve, the
points are experimentally measured (and desmeared) and
the solid line is the intensity curve back-calculated from
the maximum entropy distribution. Curves a, b, and c cor-
respond to photon energies 5.974, 5.949, and 5.789 keV.
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to the desmearing process itself. It must be noted that, al-
though Glatter43 remarks that the Lake technique requires
some preliminary smoothing of the data, it is evident from
the spheres data presented earlier that this comment is
not justified. Experience with the numerical implemen-
tation of the algorithm has shown that it is sensitive to
the quality of the integration used in the forward smear-
ing processes as well as the quality of the input data. In
general, it is found that the present implementation of the
Lake technique increases the scatter in the data by three to
five times. While this is undesirable, it is a much smaller
penalty than an arbitrary smoothing of data.

For the maximum entropy analyses, all eighteen SAXS
curves were analyzed over the range 0.01 ≤ h ≤
0.4 nm−1. Each distribution was binned with 100 di-
ametral size bins from 8 nm to 800 nm distributed evenly
in a geometric series to span the visible range of dimen-
sions, including peripheral vision. By using a geometric
series rather than an arithmetic series, the size distribu-
tions neither oversample the SAXS data from large sizes
nor undersample that from small sizes. Convergence was
achieved in 10 to 20 iterations of MaxSas.FOR. All fea-
tures within each of the eighteen distributions were con-
fined to within this range. The maximum entropy solu-
tion of the size distributions of the three SAXS curves of
Fig. 4.16 are plotted in Fig. 4.17. Each distribution was
obtained separately. Note that the central peak in each
of the curves falls at about the same diameter, indicating
good consistency in the procedure.

In a broad sense, a slight decrease in the level of back-
ground is observed as photon energy is increased, lending
support that the fundamental source of the experimental
background is the scattering of the transmitted beam by
the air path intervening between the sample and the de-
tector. The transmission coefficient of air decreases as the
photon energy is increased, therefore less intensity will be
scattered.

The multi-modal distributions presented above are typ-
ical for all of the distributions obtained for the Modified
Fe9Cr1Mo SAXS analyses. It is believed that not all the
oscillations correspond to actual peaks in the size distribu-
tion. Some may be due to systematic errors produced by
approximating the scattering features by perfect spheres
and also due to the S-B search technique as previously
discussed in the theoretical section on the maximum en-
tropy method. Taking these arguments as caveats, each

Figure 4.17: Maximum entropy scattering strength dis-
tributions for the 482◦ C sample. Each data set corre-
sponds with the same-labeled SAXS experiment shown
in Fig. 4.16. The smooth curves are drawn by hand.
Several factors serve to raise the background in these
SAXS experiments. The fundamental source of the av-
erage 4 × 104 m−1 experimental background, shown in
Table 4.3, was scattering of the transmitted beam by the
285 mm air path between the sample and the detector.
Backgrounds estimated by MaxSas.FOR were about an
order of magnitude larger than the dark noise of the pho-
todiode detector and about three times the magnitude of
the visible light leakage into the photodiode box. Back-
ground due to fluorescence of vanadium or resonant Ra-
man scattering of chromium is not conducted through the
DCD optics as that radiation is at the wrong photon en-
ergy for the angles used in the SAXS experiments.
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Table 4.3: Backgrounds of SAXS experiments on the Modified Fe9Cr1Mo steel near the Cr K absorption edge of
5989 eV as determined via the maximum entropy analysis. All backgrounds are ±400 m−1.

aging temperature background at Cr-200, m−1 background at Cr-40, m−1 background at Cr-15, m−1

N&T 49,900 49,400 43,400
482◦ C 101,100 42,800 39,200
538◦ C 26,300 21,900 11,100
593◦ C 51,500 41,000 44,300
649◦ C 66,800 23,600 30,000
704◦ C 24,800 20,800 23,300

curve can be interpreted as a guide to the general shape
of the distribution and smooth curves have been drawn
by hand to indicate the trend. Valleys in the distributions
(at about 200 - 300 nm) are most probably of low sig-
nificance as the maximum entropy method only generates
features in the distribution for which there is strong sta-
tistical support, i.e. good signal-to-noise ratio. Hence
the valleys in the distributions above are most probably
not real but exist due to a lack of statistical support in
the SAXS data for a greater value of the distribution at
that diameter. While it is possible to model the scatter-
ing features with a different shape function, such an ef-
fort would bias the entire solution to that particular shape
function. The difficulty in deconvolving the resultant size
distributions into the proper shape function for each scat-
terer (MX vs. M23X6) would be enormous. It would be
preferable to re-write the maximum entropy program to
consider a different shape function for each particle and
a different contrast for each particle and energy and use
this as the constant matrix by which the maximum en-
tropy program would solve for all three distributions (VC,
NbC, and Cr23C6) simultaneously. This problem was al-
ready addressed in the theoretical section as Model II. In
conclusion, while the spherical shape may not be the best
model for each individual scatterer, it is the most general
(and generally-accepted) shape by which to model all of
the scatterers simultaneously in absence of a priori infor-
mation, so the distributions may be interpreted as sphere-
equivalent distributions. In the maximum entropy distri-
butions obtained using the spherical shape function, the
most important feature is the largest peak in the distri-
bution. Secondary peaks are more suspect as to absolute
diametral position and height.107 Valleys show a lack of
information content in the input data.

Additionally, the distributions plotted above show the
volume fraction that is weighted by scattering contrast.
Particles with high contrast and low volume fraction will
appear on par with the reverse situation. In a simple sys-
tem with only one type of particle, the volume fraction
is the area under each curve divided by the particle con-
trast. However, in a complex system with many types of
particles scattering in the visible range of the camera, the
analysis is more involved. It is exactly this type of anal-
ysis that will be addressed in the next section where the
scattering of Cr23C6 precipitates will be isolated.

It is possible to generalize each of the scattering
strength distributions by determining the mean diameter
and the total scattering strength, X , of each distribution
from Eq. (50). X is plotted in Fig. 4.18 for each of
the eighteen SAXS experiments as a function of the 5000
hour aging temperature. From room temperature up to
482◦ C, there is no significant change in the total scat-
tering strength, indicative of a static population of pre-
cipitates. For the four temperatures above 482◦ C, X in-
creased in all cases. The increase in the scattering strength
was greatest for 5000 hour aging at 649◦ C. It is not ex-
pected that the composition of any of the precipitates will
change significantly over the range of aging temperatures
chosen, hence the scattering contrast of each particle will
remain constant with aging temperature. The changes in
the scattering contrast with aging temperature may thus
be viewed as due to changes in the volume fractions of
the various precipitate species in the steel.

The mean particle diameter for each distribution, plot-
ted in Fig. 4.19, shows a trend very similar to that of the
scattering strength. The significant difference is that the
largest particles are found for aging 5000 hours at 704◦ C.
The distribution widths are all at about 50% of the mean
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Figure 4.18: Total scattering strength, X , of all scatterers
in Modified Fe9Cr1Mo steel as a function of 5000 hour
aging temperature.

Figure 4.19: Mean diameter of all scatterers in Modified
Fe9Cr1Mo steel as a function of 5000 hour aging temper-
ature, derived from the scattering strength distributions.
The solid line is the average at each energy. The distribu-
tion widths are approximately one-half the mean diameter
in all cases.



4.2. MODIFIED FE9CR1MO STEEL 57

diameter.
It is appropriate at this point to compare the sizes just

reported with microphotographs from the transmission
electron microscope. Fig.s 4.20 to 4.21 are characteris-
tic micrographs of TEM samples from each of the six ag-
ing conditions. Micrographs were recorded using both the
JEOL JEM 100B at Northwestern University and the high
voltage electron microscope at Argonne National Labora-
tory using samples prepared by jet polishing.

By comparison, the SAXS results on the precipitate
populations are consistent with the observations of the mi-
crostructure using the transmission electron microscope.
The micrographs show that there are a variety of sizes and
particle shapes in the various samples and that those par-
ticles have dimensions consistent with those determined
from the small-angle X-ray scattering. Additionally, al-
though many of the particles appear to be situated on
martensitic lath boundaries, those boundaries appear to be
randomly dispersed in the polycrystalline samples. Be-
cause each sample volume examined by SAXS is quite
large (ca. 2 × 10−10 m3) compared to that examined
by the TEM (ca. 3 × 10−18 m3), it may be assumed
that the precipitates examined by SAXS are randomly dis-
tributed and that particle-to-particle interactions are min-
imal. The SAXS was analyzed using these assumptions
as well as assuming that the scatterers were spherical in
shape, which is roughly supported by the TEM micro-
graphs. It is difficult to gain information about the total
amount of scatterers or the density of scatterers from the
micrographs as the sample thickness is not consistent nei-
ther between nor within the photographs. Therefore, these
TEM results can neither support nor reject the SAXS re-
sult about the total scattering strength. Of note, is the
micrograph of the 482◦ C aged sample which seems to
indicate significant precipitation. The dominant features,
which are of light contrast, are surface contamination of
the sample. Only the dark features are the carbides.

4.2.4 Calculation of the Scattering Con-
trasts

To isolate the scattering due to Cr23C6 from the distri-
butions above, it is necessary to calculate the scattering
contrast, |∆ρ|2, of Cr23C6 with respect to the matrix com-
position of the Modified Fe9Cr1Mo steel. Table 4.4 lists

Figure 4.20: Transmission electron micrographs of Mod-
ified Fe9Cr1Mo steel. The upper and lower photos were
taken using the JEOL JEM 100B at Northwestern Uni-
versity at an accelerating voltage of 100 kV. The middle
photo was taken using the high voltage electron micro-
scope at Argonne National Laboratory at an accelerating
voltage of 1.2 MV.
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Figure 4.21: Transmission electron micrographs of Mod-
ified Fe9Cr1Mo steel. The upper and middle photos were
taken using the high voltage electron microscope at Ar-
gonne National Laboratory at an accelerating voltage of
1.2 MV. The lower photo was taken using the JEOL JEM
100B at Northwestern University at an accelerating volt-
age of 100 kV.

the crystallographic information used in the calculation.
For refinement, it is necessary to assume a volume frac-
tion for each carbide and deplete the matrix concentration
by a mass balance. Anomalous dispersion corrections for
all elements in the composition were calculated by the CL
method with the exception of chromium which was calcu-
lated from measured transmission data via the Kramers-
Kronig integral.

The X-ray scattering contrast, |∆ρ|2, of each precipi-
tate, reported in Table 4.5, was calculated assuming sev-
eral different conditions for the precipitates and the ma-
trix composition given in Table 1.1. The energies in Ta-
ble 4.5 are near the chromium K absorption edge and cor-
respond to those of Fig.s 4.16 and 4.17. First, it was
assumed that the precipitates are in stoichiometric com-
position. Then by assuming a volume fraction for each
precipitate and calculating the mass balance of the ma-
trix, it was determined that the variation in the calculated
scattering contrasts produced by uncertainty in precipi-
tate volume fractions is about 2 - 10%. These variations
are indicated in Table 4.5 as the “±” values. The vol-
ume fractions assumed were 1.5% for Cr23C6, 0.25% for
VC, and 0.05% for NbC. Next it was assumed that 35%
of the carbon sites would be occupied by nitrogen. This
produced a variation in the calculated scattering contrasts
of a few percent. There is evidence for partial substi-
tution of carbon in Cr23C6, VC, and NbC by nitrogen,
as reported in a comprehensive study of precipitation in
austenitic steels using convergent beam electron diffrac-
tion in the TEM.132 Finally, the scattering contrasts of
Cr-rich M23X6, V-rich MX, and Nb-rich MX were cal-
culated, where X = (C0.65,N0.35), were calculated. The
values used for M are reported in Table 4.5, after Sklad
and Sikka.129 For the ASAXS analyses, the stoichio-
metric precipitate composition of chromium carbide was
used.

Values from Table 4.5, corresponding to the SAXS data
at the three energies shown in the previous section, are
plotted in Fig. 4.22. NbC has a relatively low scatter-
ing contrast which is nearly constant for the three ener-
gies plotted. This is expected as the Nb K edge is at
18.986 keV, far from the chromium K edge. The 20%
drop in VC contrast, seen near the chromium K edge, is
due to the rising f’ of vanadium as the photon energy
moves away from the vanadium K edge at 5.465 keV.
These effects are quite small when compared to the factor-
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Table 4.4: Crystallographic structure information used in calculating the scattering contrast for the precipitates in
Modified Fe9Cr1Mo steel. Pearson and Strukturbericht numbers are given by Barrett.3 Lattice parameters are from
Hansen and Anderko.55

matrix Cr23C6 VC NbC
structure cI2, A2 cF116, D84 cF8, B1 cF8, B1

metal sites 2 92 4 4
carbon sites 6 24 4 4

lattice parameter (ao) 0.287 nm 1.0621 nm 0.4168 nm 0.4470 nm

Table 4.5: X-ray scattering contrast, |∆ρ|2, (with respect to the matrix composition) of carbo-nitrides in Modified
Fe9Cr1Mo. |∆ρ|2 is calculated in units of 1028 m−4 (= 1020 cm−4). The variation, in parentheses, is calculated from
mass balances with different volume fractions of precipitates.

photon energy, keV c = 5.789 b = 5.949 a = 5.974
E − EK -200 eV -40 eV -15 eV
Cr23C6 80(2) 143(2) 195(4)

VC 253(2) 213(2) 203(2)

NbC 20(1) 21(1) 22(1)

Cr-rich M23X6 13(1) 30(2) 45(2)

V-rich MX 147(3) 130(3) 128(3)

Nb-rich MX 21(1) 17(1) 16(1)

of-two increase in the Cr23C6 contrast.

Based on a mass balance argument, production of
Cr23C6 in Modified Fe9Cr1Mo steel is limited to 1.63%
(volume) by the matrix carbon concentration, if produc-
tion of neither VC nor NbC occurs. When both VC and
NbC are produced, as in the case of Modified Fe9Cr1Mo
steel, the maximum possible amount of Cr23C6 calculated
is significantly lower, dependent on the volume fractions
of VC and NbC that are produced. By considering that ni-
trogen could substitute for some of the carbon in Cr23C6,
the maximum amount of Cr23(C,N)6 can increase above
1.63% before a mass balance indicates that all of the ma-
trix carbon has been consumed by Cr23(C,N)6 produc-
tion. The ratio of carbon atoms to nitrogen atoms from the
reported alloy composition (Table1.1) is 65:35. The as-
sumption of up to 35% nitrogen substitution allows maxi-
mum mass balance volume-fractions of Cr23(C,N)6 com-
parable with those observed in the TEM from extraction
replicas.94, 128, 129 Nitrogen has only one more electron
than does carbon and the consideration of the precipi-
tates as carbo-nitrides rather than just carbides has lit-

Figure 4.22: X-ray scattering contrast, |∆ρ|2, (with re-
spect to the matrix composition) for the carbides Cr23C6,
VC, and NbC in the Modified Fe9Cr1Mo steel, calculated
for three energies near the chromium K absorption edge.
The contrast of the Cr23C6 increases by more than a fac-
tor of two over the range of energies while that of the MC
carbides changes by less than 20%.
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tle effect on the scattering contrast. However, a strong
dilution of the scattering contrast by two to four times
is seen when the metal site fraction is considered to be
altered. This sort of variation has a strong bearing on
the volume fractions determined by the ASAXS analy-
sis. The contrast-weighting favors the scattering from the
less-diluted compositions but this lends an uncertainty to
the volume-fraction analysis that cannot be resolved by
small-angle scattering alone.

4.2.5 Cr23C6 Volume Fraction Distribution
Isolated by ASAXS

The 20% variation in VC contrast and scant variation in
contrast of NbC renders the numerical matrix of con-
trasts ill-conditioned with respect to VC and NbC. The
variation in scattering contrasts with photon energy is
not sufficient to separate all three distributions simultane-
ously using SAXS data at photon energies only near the
chromium K edge. This is exactly the situation addressed
by Eq. (63), the ASAXS gradient method, where the
volume fraction distribution of Cr23C6, f(D,Cr23C6), can
be determined from the slope of a plot of xT (D,E) vs.
|∆ρ|2(E,Cr23C6). The intercept is the scattering strength
from all other scatterers. By the least-squares technique,
it is possible that the slope of the line could be negative,
indicating a negative volume fraction of Cr23C6. Such un-
physical values were set to a small insignificant positive
value. As was seen by analyzing the standard deviation
of the least-squares slope at each diametral bin, the cor-
rection applied was always less than the standard devia-
tion, signifying a lack of statistical certainty in the SAXS
data for that particular size of Cr23C6. This method is
also used within the program MaxSas.FOR by the S-B
search technique to ensure positive trial distributions.

Fig. 4.23 shows the volume-fraction size distribution of
Cr23C6 in each sample of the Modified Fe9Cr1Mo steel
as determined by the ASAXS gradient method. The ver-
tical bars are the standard deviation of each measurement
and indicate the estimated margin of error in the analy-
sis. With such low signal-to-noise ratios and so many
features in the distributions, each distribution was sub-
sequently smoothed to guide the eye over statistically
insignificant features in the distributions. The smooth-
ing technique110, 111 considers the reported error for each

value. The results of the smoothing are indicated by the
solid line.

A summary analysis of the Cr23C6 distributions de-
rived from ASAXS is given in Tables 4.6-4.8. The tab-
ulated values are also presented in Fig.s 4.24 to 4.27.
The area under each of the size distribution curves is the
total observed volume fraction, ∆V/V , of Cr23C6. The
volume fractions obtained from the raw analysis and the
smoother version provide an indication of the error in the
analytical procedure. Also measured from each distri-
bution is the volume-weighted mean diameter, D̄V , and
standard deviation of the mean, σ(D̄V ). For compari-
son with distributions reported by counting methods such
as TEM, other parameters are also reported. The defini-
tions of all terms are given in Table 4.9. With such a low
S/N, one must be more cautious in the interpretation of the
other parameters which are derived from transformations
of the maximum entropy volume fraction distributions,
not measured directly. The rather large margins of error
reported with the size distributions are due to systematic
errors in the maximum entropy analysis of the scattering.
As such, these errors represent the level of confidence one
can expect from each of the maximum entropy size distri-
butions.

There is little substantive change between the
chromium carbide distributions for samples aged for 5000
hours at room temperature and 482◦ C. The volume
fraction distribution of the 538◦sample shows an over-
all increase in the volume fraction, but especially at the
smaller diameters. This additional volume fraction of
small Cr23C6 produces a drop in the calculated mean di-
ameter and a peak in the number density. As the aging
temperature is raised between 538◦and 649◦, the volume
fraction and the mean diameter increase, the number den-
sity decreases slightly, and the mean particle spacing re-
mains relatively constant. The largest mean diameter is
calculated for the sample at 704◦but the volume fraction
indicated by the ASAXS analysis, significantly lower than
that for the 649◦sample, is only slightly higher than the
starting condition (N&T). Additionally, because the mean
diameter is at a maximum and the volume fraction is rel-
atively low, the calculated number density is the lowest of
all the samples and the mean spacing, calculated from the
number density, is the greatest. The overall variation in
the mean diameter is about 50% over the range of aging
temperatures.
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Figure 4.23: Volume-fraction size distributions of Cr23C6 in Modified Fe9Cr1Mo steel, determined by the ASAXS
gradient method. The vertical bars represent the margin of error. The solid line is smoothed via the technique of
Reinsch.110
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Table 4.6: Statistical summary from volume fraction size distributions of the Cr23C6 scatterers in Modified Fe9Cr1Mo
steel as determined by ASAXS. The “±” values represent the 3σ variation of values from calculated and smoothed
distributions. The smoothing technique110 considers the margin of error in the data. Each term is defined in Table 4.9.

sample Vf D̄v ,nm σ(D̄v),nm Sv , µm−1

N&T (25◦ C) 0.85± 0.09 194± 1 134± 6 0.38± 0.03

482◦ 0.71± 0.03 169± 1 97± 2 0.34± 0.02

538◦ 1.31± 1.90 138± 54 52± 66 0.67± 0.85

593◦ 1.70± 0.75 187± 20 97± 0.05 0.72± 0.22

649◦ 1.93± 1.10 208± 36 127± 16 0.80± 0.51

704◦ 0.96± 0.90 230± 42 111± 33 0.31± 0.28

Table 4.7: Statistical summary from number density size distributions of the Cr23C6 scatterers in Modified Fe9Cr1Mo
steel as determined by ASAXS. The “±” values represent the 3σ variation of values from calculated and smoothed
distributions. The smoothing technique110 considers the margin of error in the data. Each term is defined in Table 4.9.

sample Nv , 1018 m−3 Λ,nm D̄N ,nm σ(D̄N ),nm
N&T (25◦ C) 13.3± 0.3 422± 3 87± 3 39± 3

482◦ 13.8± 1.6 417± 16 80± 3 37± 1

538◦ 30.6± 29.0 323± 104 73± 15 38± 2

593◦ 24.5± 2.8 344± 13 86± 7 43± 8

649◦ 25.9± 12.7 339± 56 90± 8 41± 1

704◦ 5.8± 8.9 574± 306 121± 55 59± 7

Table 4.8: Statistical summary from the total particle surface area of the Cr23C6 scatterers in Modified Fe9Cr1Mo
steel as determined by ASAXS. The “±” values represent the 3σ variation of values from calculated and smoothed
distributions. The smoothing technique110 considers the margin of error in the data. Each term is defined in Table 4.9.

sDp,nm sNv , 1018 m−3 sΛ,nm
N&T (25◦ C) 134± 5 6.69± 0.03 531± 1

482◦ 126± 2 6.76± 0.53 529± 14

538◦ 116± 23 15.37± 13.70 406± 122

593◦ 141± 19 11.45± 0.54 444± 7

649◦ 145± 10 12.08± 9.24 439± 113

704◦ 185± 5 2.92± 2.48 706± 202
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Table 4.9: Definition of each term in the statistical sum-
mary of the size distributions.

∆Di: width of the diameter bin i

ϕi∆Di: volume fraction in the diameter bin i

fi: volume fraction size distribution
determined by the ASAXS Gradient Method

Vf : volume fraction
Vf =

∑
i
ϕi,

ϕi = fi∆Di

Dv: mean diameter, volume distribution
Dv = (

∑
i
ϕiDi)/Vf

σ(D̄v): standard deviation of D̄v

σ(D̄v) =
√

(
∑

i
ϕiD2

i )/Vf − (D̄v)2

representing the distribution width

Sv: specific surface area
Sv = 6

∑
i
ϕ/Di

Nv: number density
Nv =

∑
i
ni,

ni = ϕi/(π
6
D3

i )

Λ: mean particle spacing
Λ = N

1/3
v

Dn: mean diameter, number distribution
Dn = (

∑
i
niDi)/Nv

σ(D̄n): standard deviation of D̄N

σ(D̄n) =
√

(
∑

i
niD2

i )/Nv − (D̄n)2

representing the distribution width
sDp: Porod diameter

sDp = 6Vf/Sv

weighted by the specific surface area
sNv: number density

sNv = Sv/(πsD2
p)

weighted by the specific surface area
sΛ: mean particle spacing

sΛ =s Nv
−1/3

weighted by the specific surface area

Figure 4.24: Total estimated volume fraction of Cr23C6

in Modified Fe9Cr1Mo steel as a function of sample ag-
ing temperature. These ASAXS results are derived using
three photon energies near the Cr K absorption edge.

Figure 4.25: Mean diameter of Cr23C6 in Modified
Fe9Cr1Mo steel as a function of sample aging tempera-
ture. These ASAXS results are derived using three photon
energies near the Cr K absorption edge. See Table 4.9 for
definitions of the various diameters.
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Figure 4.26: Number density of Cr23C6 in Modified
Fe9Cr1Mo steel as a function of sample aging tempera-
ture. See Table 4.9 for definitions of the various number
densities.

Figure 4.27: Mean particle spacing of Cr23C6 in Modi-
fied Fe9Cr1Mo steel as a function of sample aging tem-
perature. See Table 4.9 for definitions of the various mean
spacings.

One possible analysis of the ASAXS results is based
on the assumption that as the 5000 hour aging temper-
ature is raised, the chromium carbide population moves
closer towards equilibrium in both volume fraction and
composition. The N&T sample is the farthest from equi-
librium, while the sample aged 5000 hours at 649◦ C
is probably at equilibrium, based on the volume frac-
tions determined by ASAXS. Thermodynamical calcula-
tions by Dr. G. Ghosh of Northwestern University us-
ing the ThermoCalcTM database (unpublished research,
1989) indicate an equilibrium volume fraction ∼1.6%
of M23C6 that is relatively constant over the temper-
ature range from 500◦through 704◦ C. ThermoCalcTM

indicated that (Cr.85Fe.01Mo.4)23C6 is the equilibrium
chromium carbide composition at 500◦ C. This compo-
sition is predicted to change monotonically with tem-
perature to (Cr.76Fe.12Mo.12)23C6 at 704◦ C. At the
tempering temperature of 760◦ C, ThermoCalcTM indi-
cates an equilibrium chromium carbide composition of
(Cr.70Fe.18Mo.12)23C6.

It could be argued that the ThermoCalcTM results are
qualitatively supported by the metal site fraction anal-
ysis reported by Maziasz.94 Using particle extractions,
(Cr.63Fe.27Mo.05)23C6 was the chromium carbide com-
position found by X-ray energy dispersive spectroscopy
for the N&T sample while (Cr.67Fe.21Mo.05)23C6 was
the composition of chromium carbide in a sample aged
10000 hours at 650◦ C. Trace amounts of Si, P, V, Mn, Ni,
and Nb account for the difference from 100% in the metal
site fractions of these two compositions. The composition
of chromium carbide in the N&T sample of Maziasz is
close to that predicted by ThermoCalcTM for composition
equilibrium at the tempering temperature of 760◦ C, indi-
cating that the sample is far from the equilibrium room
temperature composition. As the aging temperature is
raised, the composition moves closer towards the equi-
librium value predicted by ThermoCalcTM for that aging
temperature. That is, the metal site fraction of chromium
in M23C6 was found by Maziasz to increase as a func-
tion of aging temperature. The effect of chromium car-
bide composition variation from (Cr.85Fe.01Mo.14)23C6

to (Cr.70Fe.18Mo.12)23C6 on the ASAXS-determined vol-
ume fraction, by means of changing the scattering con-
trast, is at most 25%. Considering the margin of error in
determining the volume fraction, this variation does not
change the results qualitatively.
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The drop of the calculated chromium carbide volume
fraction for the 704◦ C sample, indicated by the ASAXS
analysis, is unexpected. Such a drop would suggest a
phase transition between 649◦and 704◦, in contradic-
tion to ThermoCalcTM which predicts no such sharp fea-
tures between 500◦and 850◦ C. If the volume fraction of
chromium carbide in the 704◦sample were fixed at the
value for the 649◦sample, which was assumed to be close
to equilibrium, the ASAXS results would imply a sud-
den decrease in the scattering contrast. Such a decrease in
scattering contrast could be due to either a chromium car-
bide lattice dilatation or a decrease in the atomic concen-
tration difference of Cr between the carbide and matrix.
The amount of dilatation necessary to accommodate the
change in scattering contrast would be about 2%, a value
which is not physical. The results of Maziasz suggest that
no sudden changes in chromium carbide composition oc-
cur between 650◦and 704◦for samples aged 25000 hours.

The empty beam scans for the small-angle scattering
data were also checked to verify that they had not intro-
duced an artifact into the analysis. The empty beam scans
used by the 704◦sample were shared with the AF1410
steel sample austenitized at 1000◦ C (1 hour) and aged
at 510◦ C (1/4 hour). Because the amount of scattering
observed at this aging time of the AF1410 steel was quite
low, any problems with the empty beam scan would be
magnified in the analysis. No such problems were found
in the analysis of SAXS from the AF1410 steel samples,
as will be shown later. All parameters necessary to the ab-
solute intensity conversion of the ASAXS data were ver-
ified, indicating no artifacts were introduced by the data
reduction. Therefore, the ASAXS analysis suggests that
the drop in the calculated chromium carbide volume frac-
tion between samples aged 5000 hours at 649◦and 704◦ C
is real, although no supporting evidence for such a change
has been reported.

The volume fractions determined for the Cr23C6 are
consistent with the total residue extracted from an N&T
sample (0.94%) and a sample crept at 650◦ C for an un-
specified time (1.74%) reported by Sklad and Sikka.129

The ASAXS-determined volume fraction of the 649◦aged
sample is also consistent with that reported by Mazi-
asz and Sikka94 for a sample aged twice as long, 104
hours. For 25,000 hour aging at 650◦ C, Maziasz reported
that Laves phase, (Fe,Cr,Si)2Mo, production doubled the
amount of total extracted residue. Laves phase was not

observed by Maziasz in the sample aged 104 hours at
650◦ C. By using the metal site fractions reported in
Maziasz and Sikka94 or Sklad and Sikka,129 the ASAXS-
determined volume fraction of Cr23C6 would be between
two and four times higher than that reported. This is not
consistent with either Maziasz or a mass balance of the re-
ported alloy composition. Other parameters also affected
by a different scattering contrast are Nv , Λ, and Sv , but
these changes in calculated volume fractions due to differ-
ent assumed carbide compositions do not affect D̄v , D̄N ,
or sDp.

If the volume fraction of Cr-rich M23X6 is 1.8%, where
the M is that reported by Sklad and X = C0.65,N0.35, then
a 0.20% volume fraction of V-rich MX and 0.07% of Nb-
rich MX will consume all the carbon and nitrogen in the
matrix, leaving 88% of Cr, 40% of V, and 3% of Nb still
in the matrix. This calculation matches quite well with
the results reported by Fujita37 for Fe11CrVNb steels. In
that steel, 80% of the Cr and 35% of the V were left in the
matrix after complete precipitation but the carbon content
of those steels, 0.2%, was more than double that of the
Modified Fe9Cr1Mo alloy, hence the greater precipitation
of the Cr23C6 and reduction in the matrix chromium con-
tent. There is a drop in the mean diameter for the 538◦ C
sample, indicative of an increase in the number of smaller
particles within the visible range of the experiment. This
drop is seen both in the volume-mean diameter and the
number-mean diameter as well as a peak in the number
density. In the SANS data of Kim,71, 73 the most precipi-
tation was also observed in the 538◦ C aged sample. The
visible range of that experiment was limited to dimen-
sions less than 100 nm, and is believed by this author
to have only resolved the MX clearly. The ASAXS tech-
nique used here isolates the scattering from features en-
riched in chromium, primarily Cr23C6, to dimensions as
small as about 50 nm. It is possible that if there is a finite
amount of Cr in the lattice of the MX, the Cr contribution
of that MX population could be counted with the Cr23C6.
The introduction of this smaller population would cause
the effect observed.

The specific surface area of the Cr23C6 was also calcu-
lated from the ASAXS-determined volume fraction size
distributions. Because the maximum entropy code has al-
ready fit the size distribution to the scattered intensities,
including the reported errors in the intensities, it is pos-
sible to determine the specific surface area, directly from
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the size distribution for spherical scatterers. The value of
Sv obtained from the size distribution was compared with
that obtained from a conventional Porod analysis of the
SAXS intensity (i.e., plot of I · h4 vs. h4) for one of the
samples (482◦ C aged) at each of the three energies near
the chromium K absorption edge with identical results to
within the margin of error in the reported intensities. In
Fig. 4.28 are plotted the Sv as a function of the 5000 hour
aging temperature. The SANS results of Kim71 are also
plotted. Although no critical assessment of the SANS data
is provided here, it is observed that there is no question
that the Porod law fits the SANS data quite well. In fact,
one could argue that the Porod law is the only functional
dependence observed in that data. For the two highest ag-
ing temperatures, both the ASAXS and the SANS are in
good agreement while discrepancies exist for the lower
temperatures. Probably this is due to the visible range of
dimensions accessible to each experiment as well as the
scattering vector resolution. Additionally, the SANS did
not specifically isolate the scattering of Cr23C6 (as did the
ASAXS) so the Sv reported there may also include contri-
butions from other precipitates such as the MC. The MC
are believed to be smaller, which would cause an increase
in the measure of Sv . In general, the trend observed in
the ASAXS analysis of the Cr23C6 population is compa-
rable with the SANS data of Kim71 and also the diamond
pyramid hardness measurements of Kim on the aged steel
samples, given in Fig. 73 of his dissertation. Kim found
that the hardness peaks for the sample aged 5000 hours at
538◦ C.

A complete analysis of the scattering-strength distribu-
tions would include a description of the residual scattering
strength unaccounted for by the ASAXS analysis. While
it is possible to construct plots of those residual distribu-
tions, the S/N is poor. In general, the residual scatter-
ing strength remaining after the ASAXS isolation of the
Cr23C6 distribution, is consistent with any volume frac-
tion of VC between 0 and 0.2%. The scattering contrast
and the estimated volume fraction for NbC, based on the
previous mass balance arguments, combine to render the
NbC scattering strength distributions below the limit of
detectability.

Figure 4.28: Specific surface area of Cr23C6 in Modified
Fe9Cr1Mo steel, calculated from size distributions deter-
mined by ASAXS. The SANS data are from.71
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4.2.6 Summary of Modified Fe9Cr1Mo
Steel Analyses

Sample thicknesses were determined by multiple pho-
ton energy transmission measurements to a precision of
0.3 m on an average SAXS sample thickness of 24 µm.
Anomalous dispersion corrections for chromium were de-
termined from a sample of Modified Fe9Cr1Mo steel in
the normalized and tempered condition by transmission
measurements and the Kramers-Kronig integral. The val-
ues calculated agreed with a theoretical calculation of
the dispersion corrections to a precision of ±0.2 electron
units.

Small-angle scattering was measured at three photon
energies near the chromium K absorption edge from six
different samples, aged for 5000 hours at different tem-
peratures. The scattering was modeled by a distribution
of spheres giving equivalent scattering using the maxi-
mum entropy method. The ASAXS contrast variation
technique was used to isolate the volume-fraction size
distribution of Cr23C6 from the total measured size dis-
tribution of scatterers in this engineering alloy, Modified
Fe9Cr1Mo steel. Those distributions are found to re-
main constant for 5000 hour aging between room tem-
perature and 482◦ C. For isothermal 5000 hour aging at
temperatures between 482◦and 649◦, the volume frac-
tion of chromium carbide increases, while for the sample
aged at 704◦, the volume fraction was slightly larger than
the N&T sample. The volume fractions determined were
found to be in agreement with those reported by Maziasz
of the Oak Ridge National Laboratory. To support the vol-
ume fractions measured, it was rationalized that some of
the carbon lattice sites in the Cr23C6 could be occupied by
nitrogen as in Cr23(Cx,N1−x)6 although the partitioning
between C and N cannot be determined from the SAXS
data. The results from the ASAXS analysis are consistent
with an explanation that the chromium carbide population
moves towards thermal equilibrium as the aging tempera-
ture is raised and that the 649◦sample aged for 5000 hours
is close to equilibrium.

The total observed change in the mean diameter of
Cr23C6 is ∼50% and increases monotonically with ag-
ing temperature while the volume fraction can more than
double over the observed range of aging temperatures and
is peaked at 649◦ C. The specific surface area of the
Cr23C6 was in general agreement with the SANS data

of.71 The distributions of MX precipitates were not obvi-
ous in these small-angle scattering experiments using the
double-crystal diffractometer.

4.3 AF1410 Steel
The measurements of SAXS from the AF1410 steel will
be described. ASAXS experiments were conducted at
several photon energies (wavelengths) near the chromium
K absorption edge to accentuate the scattering from pre-
cipitates enriched in chromium. An additional set of
ASAXS experiments were conducted near the iron K
absorption edge to accentuate the scattering from iron-
deficient precipitates.

4.3.1 ASAXS Analyses
The matrix of AF1410 steel is deficient in chromium and
enriched in iron so that any ASAXS variation in intensity
at photon energies near the chromium and iron K edges
will expose scatterers enriched in chromium and/or defi-
cient in iron. To examine the samples for any ASAXS due
to Cr-enriched scatterers, three photon energies near the
chromium edge of 5989 eV were chosen: 5789, 5949, and
5974 eV. Testing for Fe-deficiency in the scatterers, three
photon energies near the iron edge of 7112 eV were cho-
sen: 6912, 7072, and 7097 eV. For the experiments above
5989 eV, it was known that the 2.1% (weight) Cr in the al-
loy would fluoresce but that radiation is at the wrong pho-
ton energy to be conducted by the DCD analyzer optics at
the angles used to measure the SAXS. Experimental re-
sults from the DCD, using a variety of samples and pho-
ton energies as reported in this dissertation, show that the
SAXS intensity measured using the DCD is background
limited. In general for the collimation-corrected SAXS
from AF1410 steel, the background intercepted the SAXS
at about h ∼ 0.1 to 0.15 nm−1 which corresponds to a
minimum visible dimension of 40 to 60 nm. Thus the vis-
ible range of dimensions in this data does not include any
of the 2 - 5 nm population of M2C reported by Allen1

from SANS data using samples prepared identically to
the present experiment. The source of this experimen-
tal background is most likely due to parasitic scattering
of the transmitted beam by the 285 mm intervening air-
path between the sample and the detector required for the
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double-crystal analyzer.
If Cr fluorescence were to be a problem, the experi-

mental background would be higher in the Fe-edge ex-
periments than the Cr-edge experiments. No such in-
crease was observed, consistent with the conclusion that
the DCD optics reject the lower energy photons. The
SAXS observed at 7097 eV, 15 eV below the Fe K absorp-
tion edge, had the poorest ratio of signal-to-noise (S/N),
as may be observed in the plots of SAXS located in the ap-
pendix. In fact, the distributions determined by the max-
imum entropy analyses were discarded for all samples at
this energy due to poor information content, characterized
by bad fitting of intensities using the maximum entropy
method.

In general, S/N in the raw data was ≤ 10 before
collimation-correction, as shown in Fig. 4.29. There
was no detectable change with photon energy in the
desmeared dΣ/dΩ(h) for any of the samples, indica-
tive of no ASAXS. The lack of both Cr- and Fe-ASAXS
strongly indicates that the visible scatterers observed are
neither enriched in chromium nor are they deficient in iron
although the latter is not as well supported by the low S/N
data near the Fe K edge.

The SAXS data from a single sample measured at sev-
eral different photon energies reveal no difference in the
profile of dΣ/dΩ(h) as a function of energy within the
scatter of the data and the reported errors. Therefore, the
distributions derived from a maximum entropy analysis of
each SAXS curve from a single sample at different photon
energies were averaged together and systematic errors in
the data reduction and analysis procedure were estimated
from the standard deviation of the average. In general,
useful SAXS data for the angular range 0.01 h 0.15 nm−1

corresponding to visible dimensions of 40 to 300 nm were
available from all the photon energies except 7097 eV. At
early aging times, lenticular M3C (cementite) has been
observed in the TEM. At longer aging times, spheroidal
M6C, M23C6, and austenite have been observed in ad-
dition to cementite. Calculations of the AF1410 steel
thermodynamics at 510◦ C by Haidemenopoulos51 using
ThermoCalcTM show that the equilibrium volume frac-
tions of M6C, M23C6, and austenite are 0.021%, 2.5%,
and 16.7% respectively. The X-ray scattering contrast of
M6C is about on par with that of austenite. Combined
with its low equilibrium volume fraction, the M6C is un-
detectable to SAXS because of its low scattering strength.

Figure 4.29: Raw data showing the low signal-to-noise
ratio typical for the SAXS (difference between the two
curves) from the AF1410 steel samples. This particu-
lar sample was austenitized at 1000◦ C for 1 hour (oil
quench) and then aged at 510◦ C for 5 hours (water
quench). The photon energy is 5789 eV. Statistical un-
certainties for each intensity are smaller than the plotting
symbols.
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Table 4.10: Compositions of cementite at para-
equilibrium and 510◦ C ortho-equilibrium.

para-equilibrium M3C
(Cr.0229 Fe.7350 Co.1372 Ni.0988 Mo.0061)3C

(no partitioning of the metal substitutional elements)

ortho-equilibrium M3C (510◦ C)
(Cr.7011 Fe.1878 Co.0168 Ni.0845 Mo.0098)3C

(complete partitioning of the metal substitutional ele-
ments)

M23C6 is Cr-rich and the lack of detectable ASAXS indi-
cates that no M23C6 precipitates were observed.

The calculated volume fraction of cementite in equi-
librium with ferrite in AF1410 at 510◦ C is 2.27%, cal-
culated by Ghosh (private communication, 1990) using
ThermoCalcTM. At the earliest stages of cementite for-
mation, assuming that the formation is carbon-diffusion
controlled, it is reasonable to assume that the metal site
fraction will be that of the matrix. Compositions of these
two equilibrium conditions are given Table 4.10. A di-
rect consequence of the para-equilibrium composition (no
partitioning of the metal substitutional elements) is that
the X-ray scattering contrast is due only to the differ-
ence in the carbon concentration from the matrix making
the para-equilibrium M3C invisible to the SAXS experi-
ment. However, any change in the metal site fraction from
para-equilibrium will produce a significant increase in the
contrast, to the range of 1028 – 1029 m−4. To consider
the possibility of the measured scattering at the earliest
aging times coming from cementite, it is assumed that
M3C is not exactly at the para-equilibrium composition.
The ortho-equilibrium cementite (complete partitioning
of the metal substitutional elements) is highly enriched
in chromium which would be exposed by a significant Cr-
ASAXS effect. Because no Cr-ASAXS was observed, it
is believed that the cementite is not close to the ortho-
equilibrium composition. Haidemenopoulos reports that
there is a significant variation from particle-to-particle in
the compositions of both the M3C and the austenite in
AF1410, measured by STEM microanalysis. Such varia-
tions lead to a loss of precision in calculations of the con-
trasts of the various scatterers.

In the following presentation, the SAXS results will

be separated into two sections. The first section will de-
scribe results from the samples austenitized at the tem-
perature predicted by ThermoCalcTM (1000◦ C) as neces-
sary to dissolve all carbides. The second section describes
the scattering from samples austenitized at the standard
temperature of 830◦ C. In either case, the samples were
austenitized for one hour and then quenched in oil to room
temperature. The samples were then aged at 510◦ C for
the specified time and then quenched in water to room
temperature. A full description of these procedures is
given elsewhere.99 The damped-spheres shape function
described earlier was used in the maximum entropy anal-
ysis of the scattering to determine sphere-equivalent dis-
tributions. All SAXS curves were analyzed over the range
0.01 ≤ h ≤ 0.4 nm−1 by the program MaxSas.FOR,
where the higher limit allowed the program to make a
good determination of the experimental background.

Continuous curvature was observed in the SAXS data
when plotted as log(dΣ/dΩ) vs. h2 indicating that the
underlying distribution of scatterers is too broad for a
Guinier relationship to be established within the experi-
mental range of scattering vectors. Low S/N, ≤ 10, casts
significant uncertainty on the results of any Porod analy-
sis, h4dΣ/dΩ vs. h4. Therefore, only the maximum en-
tropy analysis of the data will be presented. The margin
of error in the maximum entropy distributions is always
greatest at the lower dimensions where the information
content is derived from, generally, the lowest intensities
in the experiment at the highest scattering vectors.

4.3.2 Austenitized at 1000◦ C
The scattering from nine samples of AF1410 steel austen-
itized one hour at 1000◦ C was measured at photon ener-
gies near the Cr K absorption edge. Each sample was aged
at 510◦ C for either: 1/4, 1/2, 1, 2, 5, 8, 10, 50, or 100
hours. Additionally, the SAXS from three of these sam-
ples (1/4, 5, and 10 hours aged) were measured near the
Fe K edge. All of the SAXS curves are reported in the ap-
pendix, including the intensity calculated from the max-
imum entropy scattering strength distribution. As men-
tioned before, the data from the experiment closest to the
iron K edge were discarded due to poor information con-
tent. Because no ASAXS was observed, the size distribu-
tions at different photon energies for a single sample were
averaged. These averaged maximum entropy scattering
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strength distributions are shown in Fig. 4.30 for all nine
samples, including the estimated margin of error plotted
as vertical bars. Indicated on the left of each distribution
is the number of SAXS experiments contributing to the
average. For two samples, 2 and 8 hours aging, SAXS
data were recorded at only one photon energy. Because
it was not possible to estimate a margin of error in their
distributions, those distributions are not shown. The esti-
mated margin of error was taken as the standard deviation
of the average of several distributions from the same sam-
ple. The vertical scale of each plot is the same.

The sample thicknesses were determined from multi-
ple photon energy transmission measurements, the same
method as used in the analysis of the SAXS from the
Modified Fe9Cr1Mo steel. The SAXS results may be cat-
egorized into three regions of aging time as follows: 1) be-
tween 1/4 and one hour, the size and scattering strength re-
main constant; 2) between 1 and 5 hours, the size remains
roughly constant but the scattering strength increases; 3)
from 5 to 100 hours, nucleation and growth of a second
population is observed. This distribution dominates the
scattering at the longest aging times. Presumably, the
population at the shortest aging times is the M3C, where
the breadth of the distributions is due to systematic er-
rors in modeling the particle shape. Starting with 1 -
5 hours aging, the distributions grow taller and slightly
more narrow as the second population (presumably pre-
cipitated austenite) appears to be undergoing nucleation
and growth.

In Fig. 4.31, the total scattering strength observed in the
SAXS experiments,

X =
∫ ∞

0

x(D)dD (4.3)

=
(
|∆ρ|2Vf

)
M2C

+
(
|∆ρ|2Vf

)
austenite

+
(
|∆ρ|2Vf

)
...

as measured from the averaged maximum entropy scat-
tering strength distributions, x(D), is reported as a func-
tion of aging time. Between 1/4 and 1/2 hours, the scat-
tering strength drops corresponding to a slight decrease
in the volume fraction of cementite. The higher scat-
tering strength at 1 hour could be due to an increase in

Figure 4.31: Total scattering strength from distributions
of scatterers in AF1410 steel austenitized at 1000◦ C as
a function of the isothermal (510◦ C) aging time. The
margins of error in the determinations are indicated. The
solid curve is calculated from volume fractions measured
by Montgomery.

the scattering contrast of cementite as its composition
moves closer towards ortho-equilibrium. Using X-ray
diffraction, Montgomery99 estimated the volume fraction
of cementite and showed it to decrease for aging times
greater than a few hours. Additionally, the volume frac-
tion of austenite was also measured (private communica-
tion, 1990) and shown to increase with aging time. This
increase in the austenite volume fraction is consistent with
the observed maximum entropy scattering strength distri-
butions.

The total scattering strength observed as a function of
aging time can be modeled as the sum of the scattering
strengths from two separate distributions,

X(t) = xθ(t) + xγ(t) (4.4)
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Figure 4.30: Scattering strength weighted distributions of sphere-equivalent scatterers in AF1410 steel samples austen-
itized at 1000◦C as a function of the isothermal (510◦ C) aging time. The vertical bars indicate the margin of error
estimated by averaging several SAXS experiments.
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Table 4.11: Summary of maximum entropy distributions for AF1410 austenitized at 1000◦ C.

aging time, hr D̄x, nm σ(D̄x), nm V̄x, µm3 σ(V̄x), µm3

0.25 144 54 0.00222 0.00218
0.5 178 103 0.0064 0.0101
1 237 82 0.00954 0.00842
2 255 171 0.0226 0.0363
5 141 72 0.00269 0.0323
8 190 112 0.0079 0.0125

10 158 82 0.00393 0.00539
50 153 67 0.00309 0.00427
100 160 85 0.00403 0.00686

=
[
|∆ρ|2Vf

]
θ

+
[
|∆ρ|2Vf

]
γ

where θ indicates cementite and γ indicates austenite and
the scattering contrast of each phase is assumed to be
independent of aging time. Using the volume fractions
of Montgomery, listed in Table 4.12, the total scattering
strength as a function of aging time at 510◦ C observed by
SAXS was reproduced by assuming a scattering contrast
of 1.2±0.3×1029 m−4 for M3C and 1.5±0.3×1029 m−4

for austenite. These calculated scattering strengths are
plotted as the thick line in Fig. 4.31. The numerical preci-
sion of the best-fit scattering contrasts could easily mask
time-dependencies in the composition of either precipi-
tate, assuming that the initial composition of cementite is
not at para- or ortho-equilibrium. Montgomery also has
measured the volume fraction of austenite and estimated
that of cementite by X-ray diffraction. These values have
been combined with the X-ray scattering strengths deter-
mined from the SAXS scattering strength distributions to
set limits on the range of probable metal site fractions
for the observed scatterers, assumed to be either M3C or
austenite in the analysis below.

4.3.3 Austenitized at 830◦ C
The scattering from six samples of AF1410 steel austeni-
tized one hour at 830◦ C was measured at photon energies
near the Cr K absorption edge. Each sample was aged at
510◦ C for either: 1/4, 1, 2, 5, 10, or 100 hours. All of the
SAXS curves are reported in the appendix, including the
intensity calculated from the maximum entropy distribu-
tion. As with the sample austenitized at 1000◦ C, because

Table 4.12: Volume fraction of precipitates in AF1410
steel austenitized at 1000◦ C determined by X-ray diffrac-
tion by Montgomery. Samples were aged at 510◦ C for the
time specified.

aging time, hr Vf, M3C Vf, austenite
0.25 .019± .005

0.5 .018± .002

1 .015± .002 .005± .003

2 .015± .0025 .013± .003

5 .015± .0025 .008± .003

8 .013± .002 .024± .003

10 .012± .002 .026± .003

50 .007± .002 .058± .003

100 .003± .001 .100± .003

no ASAXS was observed and so the size distributions at
different photon energies for a single sample were aver-
aged. The total scattering strengths observed are higher
by about 30for the samples austenitized at 830◦ C than
those from the 1000◦ C temperature.

As with the 1000◦ C series, the SAXS results may
be categorized into three regions of aging time as fol-
lows: 1) between 1/4 and one hour, the size decreases
slightly and the scattering strength remains constant; 2)
between 1 and 5 hours, the size remains roughly constant
but the scattering strength increases; 3) from 5 to 100
hours, a second population appears at lowest dimensions
and is observed to nucleate and grow. The two distribu-
tions are presumed to be cementite and austenite, with as-
sumed scattering contrasts of 1.3 ± 0.5 × 1029 m−4 and
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Figure 4.33: Total scattering strength from distributions
of scatterers in AF1410 steel austenitized at 830◦ C as
a function of the isothermal (510◦ C) aging time. The
margins of error in the determinations are indicated. The
solid curve is calculated from volume fractions measured
by Montgomery.

1.4±0.3×1029 m−4, respectively. The maximum entropy
distributions are plotted in Fig. 4.32. Indicated at the left
of each distribution is the number of SAXS experiments
contributing.

4.3.4 Discussion

The results from the SAXS analyses are very similar for
the 830◦ C series and the 1000◦ C series. The total scat-
tering strength of the 830◦ C series samples is about 30%
higher than that from the 1000◦series an increase which is
easily accounted for by the volume fraction measurements
of Montgomery. Differences in the assumed scattering
contrasts between samples for cementite and austenite are
within the precision of the measurement, precluding an

Table 4.14: Volume fraction of precipitates in AF1410
steel austenitized at 830◦ C determined by X-ray diffrac-
tion by Montgomery. Samples were aged at 510◦ C for
the time specified.

aging time, hr Vf, M3C Vf, austenite
0.25 .020± .005

1 .018± .002 .016± .003

2 .017± .003 .022± .003

5 .016± .002 .030± .003

10 .010± .003 .056± .003

100 .005± .001 .130± .003

observation of any time-dependent behavior. A prediction
of the composition of cementite and of austenite that will
produce a scattering contrast equivalent to that observed is
beyond the limit of precision in the current measurement.
To illustrate, the scattering contrast for cementite will be
calculated as a function of the composition of the metal
sites in the unit cell. In Table 4.15, the structural informa-
tion necessary to calculate the X-ray scattering contrast
is given. The lattice parameters have been supplied by
Montgomery.

As postulated above, if the formation of cemen-
tite is controlled by the rate of carbon-diffusion, then
the initial composition of cementite should be that of
para-equilibrium which is iron-rich and chromium defi-
cient. The ortho-equilibrium composition calculated by
ThermoCalcTM is chromium-rich and iron-deficient. By
considering that the cementite follows a linear composi-
tion trajectory during the course of aging at 510◦C be-
tween the para-equilibrium and ortho-equilibrium com-
positions, the X-ray scattering contrast of cementite was
calculated and is shown in Fig. 4.34 using the photon en-
ergies for the SAXS experiments. The two highest photon
energies correspond to Fe-ASAXS while the lower three
would expose Cr-ASAXS effects. In addition to data from
Table 4.15, the contrast calculations required anomalous
dispersion corrections for all elements present. These
were calculated by the method of Cromer and Liberman21

except for that of chromium which was calculated from
X-ray transmission measurements from a sample of Mod-
ified Fe9Cr1Mo steel. Also indicated on that plot is the
contrast assumed for cementite from the present SAXS
data in concert with the estimated cementite volume frac-
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Figure 4.32: Scattering strength weighted distributions of sphere-equivalent scatterers in AF1410 steel samples austen-
itized at 830◦C as a function of the isothermal (510◦ C) aging time. The vertical bars indicate the margin of error
estimated by averaging several SAXS experiments.
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Table 4.13: Summary of maximum entropy distributions for AF1410 austenitized at 830◦ C.

aging time, hr D̄x, nm σ(D̄x), nm V̄x, µm3 σ(V̄x), µm3

0.25 274 144 0.0196 0.0203
1 220 124 0.0113 0.0141
2 254 145 0.0171 0.019
5 123 46 0.0014 0.00146

10 106 58 0.0013 0.0023
100 181 78 0.005 0.00625

Table 4.15: Crystallographic structure information used in calculating the scattering contrast for the precipitates in
AF1410 steel. Pearson and Strukturbericht structure numbers are from Barrett.3 Lattice parameters after Montgomery
(private communication, 1990).

matrix austenite M3C
structure cI2, A2 cF4, A1 oP16, DO11

metal sites in unit cell 2 4 12
carbon sites in unit cell 6 4 4
experimental lattice parameter ao = 287 pm ao = 360 pm ao = 509 pm

bo = 674 pm
co = 452 pm

tions of Montgomery.

Strong Fe-ASAXS effects are observed throughout the
range of compositions while Cr-ASAXS effects only be-
come important above∼10% on the abscissa, correspond-
ing to a chromium site fraction of ∼0.10. In the present
experiment, neither strong Cr-ASAXS nor strong Fe-
ASAXS effects were observed, suggesting that the com-
position of cementite is not represented on Fig. 4.34.
While the limit imposed by the lack of Cr-ASAXS is not
likely to change appreciably, nothing else may be said
about the composition of the metal sites.

The present set of experiments describe useful informa-
tion about the limits of the ASAXS technique. The min-
imum detectable limit of total scattering strength should
be greater than 3 ∼ 5 × 1027 m−4 while the change
produced by ASAXS should be no less than 30scatter-
ing strength. With S/N ∼ 3, the average total scattering
strength of 3 ∼ 5 × 1027 m−4 in these experiments is
at the threshold of the measurement. Any total scatter-
ing strength less than ∼ 1027 m−4 can be termed a weak
scatterer.

4.3.5 Summary of the AF1410 SAXS analy-
sis

The observed small-angle scattering intercepted the back-
ground at a scattering vector of ca. 0.15 nm−1 and was too
high to permit measurement of the SAXS from the M2C
population observed by Allen. Within the experimental
range of scattering vectors 0.01 ≤ h ≤ 0.15 nm−1, no
variations in SAXS were observed as the incident pho-
ton energy was changed near either the chromium or
iron K edges. This lack of Cr-ASAXS and lack of Fe-
ASAXS indicates that the visible scatterers of dimensions
between 40 and 300 nm in AF1410 steel are neither en-
riched in chromium nor are they deficient in iron. The
observed SAXS is very weak with a signal-to-noise ratio
≤ 10. Only for samples aged the longest time, 100 hours
at 510◦ C, does the total scattering strength rise above
1028 m−4. Using volume fractions measured by Mont-
gomery, it is possible to account for all of the total scat-
tering strength by considering a two-component model of
cementite and austenite populations. The breadths of the
cementite distributions are most probably due to system-
atic errors in modeling the scattering from the lenticular
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Figure 4.34: X-ray scattering contrast calculated for
cementite in AF1410 steel as the metal site frac-
tion progresses linearly from para-equilibrium to ortho-
equilibrium. The photon energies used to test for ASAXS
are indicated.

particle shape by a spherical form factor. The SAXS re-
sults for samples austenitized at either 830◦or 1000◦ C are
principally the same although the total scattering strength
of the 830◦series was the higher by about 30%.



Chapter 5

Summary

The double-crystal diffractometer SAXS camera devel-
oped for this work seems to be a very good instrument.
It is capable of recording the small-angle scattering from
a wide variety of materials. Additionally, absolute in-
tensity scaling parameters have been shown to be avail-
able directly from the SAXS experiment. Correction of
the recorded SAXS curves for the effects of slit-length
collimation smearing is possible using the technique of
Lake,81 although the scatter in the data appears to be in-
creased by this step. The versatility of the DCD as well
as the desmearing process have been demonstrated on a
variety of samples. Additionally, utilization of Ge optics
and an asymmetrically-cut first monochromator crystal
has improved the quality of data from the instrument with-
out compromising resolution. The improvements were
gained by optimizing the design of the optics for the syn-
chrotron radiation source. The silicon photodiode X-ray
detector proved to be an integral component of the scat-
tering experiment. Its use obviated the need for separate
transmission measurements and calibration runs as the pa-
rameters for each of these are available during the regular
course of the SAXS experiment. The photodiode detec-
tor demonstrated a significant improvement in data col-
lection capability and efficiency over that of a scintillation
counter; i.e. faster data collection, lower noise, higher in-
cident count rate, and no damage due to high intensities.

SAXS from samples of polystyrene spheres were used
to demonstrate the quality of the data reduction procedure.
Good agreement was found between the desmeared in-
tensity and a direct calculation of the scattered intensity
from a model Gaussian size distribution. The shallowness
of the valleys observed between the secondary maxima

in the SAXS data are most probably due to (in order of
decreasing importance) polydispersity of a few percent,
multiple scattering, and asphericity. These data were also
used to demonstrate that slit-width smearing in the SAXS
data taken with the DCD is negligible.

A primary method for converting the data to units of
absolute intensity was given using parameters measured
during the normal course of the SAXS experiment. Com-
parison tests of this methods were performed in two other
laboratories. In both cases, the excellent agreement vali-
dated the procedures described here.

A recipé for a chemical thinning solution was given
that allows reproducible preparation of steel samples of
less than 20 µm thickness over areas as large as 100 mm2

without mechanical deformation. This solution is good
for the preparation of steel samples for SAXS as well
as pre-thinning steel samples for TEM measurements to
minimize magnetic effects. Thicknesses of these samples
were determined by multiple photon energy transmission
measurements to a precision of 0.3 µm on an average
SAXS sample thickness of 24 µm. X-ray transmission
radiography was used to check the uniformity of sample
thickness and to avoid any pinholes within the illuminated
area for the SAXS experiments. Anomalous dispersion
corrections for chromium were determined from a sample
of Modified Fe9Cr1Mo steel in the normalized and tem-
pered condition by transmission measurements and the
Kramers-Kronig integral. The values calculated agreed
with a theoretical calculation of the dispersion corrections
to a precision of ±0.2 electron units.

Small-angle X-ray scattering was measured at three
photon energies near the chromium K absorption edge

77
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at 5989 eV from six different samples of Modified
Fe9Cr1Mo steel, aged for 5000 hours at different temper-
atures ranging from room temperature up to 704◦ C. The
scattering was modeled by a distribution of spheres giving
scattering equivalent to that observed by use of the max-
imum entropy method. The sphere-equivalent, maximum
entropy size distributions were shown to be in agreement
with TEM observations.

The ASAXS contrast variation technique was used to
isolate the volume-fraction size distribution of Cr23C6

from the total measured size distribution of scatterers in
this engineering alloy, Modified Fe9Cr1Mo steel. Those
distributions are found to remain constant for 5000 hour
aging between room temperature and 482◦ C. For isother-
mal 5000 hour aging at temperatures between 482◦ and
649◦, the volume fraction of chromium carbide increases,
while for the sample aged at 704◦, the volume frac-
tion was slightly larger than the N&T sample. The vol-
ume fractions determined were found to be in agreement
with those reported by Maziasz of the Oak Ridge Na-
tional Laboratory. To support the volume fractions mea-
sured, it was rationalized that some of the carbon lattice
sites in the Cr23C6 could be occupied by nitrogen as in
Cr23(Cx,N1−x)6 although the partitioning between C and
N cannot be determined from the SAXS data. The results
from the ASAXS analysis are consistent with an explana-
tion that the chromium carbide population moves towards
thermal equilibrium as the aging temperature is raised and
that the 649◦ sample aged for 5000 hours is close to equi-
librium.

The total observed change in the mean diameter of
Cr23C6 is 50% and increases monotonically with aging
temperature while the volume fraction can more than dou-
ble over the observed range of aging temperatures and
is peaked at 649◦ C. The specific surface area of the
Cr23C6 was in general agreement with the SANS data of
Kim.71 The distributions of MX precipitates were not ob-
vious in these small-angle scattering experiments using
the double-crystal diffractometer.

In SAXS data recorded from samples of steel alloy
AF1410, the observed small-angle scattering intercepted
the background at a scattering vector of ca. 0.15 nm−1

and was too high to permit measurement of the SAXS
from the M2C population observed by Allen. No vari-
ations in SAXS were observed as the incident photon
energy was changed near either the chromium or iron

K edges, indicating that the visible scatterers of dimen-
sions between 40 and 300 nm are neither Cr-rich nor Fe-
deficient. Using volume fractions measured by Mont-
gomery, it was possible to account for all of the total scat-
tering strength by considering a two-component model of
cementite and austenite populations. The breadths of the
cementite distributions are most probably due to system-
atic errors in modeling the scattering from the lenticular
particle shape by a spherical form factor. The SAXS re-
sults for samples austenitized at either 830◦ or 1000◦ C
for 1 hour are principally the same although the total scat-
tering strength of the 830◦ series was the higher by about
30%.

Analysis of small-angle scattering data for size distri-
butions via the maximum entropy method106 appears to
yield satisfactory results although improvements to the
procedure are possible. The most important of these is
to decrease the sensitivity of the procedure to strong gra-
dients in the particle form factor. These gradients are be-
lieved to cause spurious oscillations in the derived distri-
butions that suggest a greater information content in the
scattering data than is extant. Modification of the parti-
cle form factors by a weighted smoothing process con-
firms this suspicion and improves the perceived quality of
the answer obtained without degrading algorithm perfor-
mance.

The technique of anomalous small-angle X-ray scatter-
ing has been successfully applied to the problem of iso-
lating the size distribution of a single type of scatterer in
a multi-component alloy. The volume fraction size dis-
tribution was isolated using a contrast gradient method.
From the volume fraction size distribution, the mean di-
ameter, volume fraction, number density, and particle sur-
face surface-to-volume ratio were been calculated. Re-
sults from other analytical methods, such as atom probe
field ion microscopy, transmission electron microscopy,
X-ray energy dispersive spectroscopy, and small-angle
neutron scattering, provided information necessary to the
interpretation of the ASAXS data.

5.1 Suggestions for Future Work
The SAXS data recorded using the double-crystal diffrac-
tometer camera and silicon photodiode detector is lim-
ited by a high experimental background. Presumably, the
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source of this background is scattering of the transmit-
ted beam by the 285 mm air path intervening between the
sample and the detector required for the motions of the
DCD analyzer. Reduction of this distance is not possi-
ble. As a major modification of the experimental arrange-
ment, it is suggested to build an environmental chamber
to contain virtually all of the DCD camera equipment cur-
rently place in the experimental hutch. Such a modifica-
tion is not trivial as all of the motions provided by the
two sets of hutch mechanical arms would need to be pro-
vided within the confines of the chamber. However, the
use of such a chamber with just above one atmosphere of
helium gas would reduce the air scattering as well as ab-
sorption of the scattered intensity. The advantage to be
gained from this modification is the measure of scatterer
of dimensions less than ∼ 40 nm in the weakly-scattering
steel samples. Examples of these scatterers are the MX in
Modified Fe9Cr1Mo or M2C in AF1410.

There is still room for several improvements to the pho-
todiode detector system as it has been built. By incorpo-
rating phase-detection, synchronized to the pulses of the
synchrotron radiation, uncorrelated sources of noise could
be eliminated which would then reduce the background
and indirectly increase the highest scattering vector in the
SAXS experiment. Either a log-ranging amplifier or an
auto-ranging feedback circuit would allow the detector to
operate unattended.

Because the expected SAXS from the steel samples at
scattering h ≥ .15 nm−1 was masked by the experimen-
tal background, it would be useful to measure the SAXS
on another camera which operates in helium or vacuum
so that the background is not a problem. Both ORNL and
NIST have pinhole cameras equipped with an area detec-
tor at a distance of a few meters from the sample. The
X-ray generator for each of these is a rotating anode. For
these experiments, it is necessary to use a chromium an-
ode as even an iron anode would fluoresce the 9% Cr in
the Modified Fe9Cr1Mo steel.

In order to extract more information from the SAXS
data from AF1410 steel, it is necessary to have a reliable
measure of the composition of the cementite and austenite
as well as the lattice parameters of each for a more precise
calculation of the scattering contrasts. Also needed for the
interpretation of the SAXS is a particle form factor for
the lenticular shape of the cementite as they are not well-
characterized as spheres. With this information, it should

be possible to extract more precise information about the
number density and mean particle size from the existing
SAXS data as well as probe for any ASAXS.

Last, but most important, it would be very satisfying to
know that the DCD camera developed for this work will
continue to be applied to problems in materials science.
One obvious application that comes to mind is to perform
a primary calibration of a set or sets of secondary stan-
dards for use by other small-angle scattering facilities.
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Appendix: Other Samples Examined with
the Double-Crystal Diffractometer

Two other materials have been examined with the
double-crystal diffractometer SAXS camera. The SAXS
from each of these materials are distinct and different
from each other. The first sample, bulk microporous sil-
ica, has been used by others as a secondary calibration
standard of absolute intensity. The second material is
porous VycorTMglass, which exhibits strong interference
effects indicative of an ordered structure of scattering cen-
ters.

A Bulk Microporous Silica

The microstructure of low-density microporous silica pre-
cursor (unsintered) bodies was studied as a function of
the starting chemistry. The ratio of colloidal silica sol to
potassium silicate is known to have a marked effect on the
size distribution of pores in this material, which in turn
have a major impact on the resultant physical properties
of the sintered product.

To study the effect of the starting chemistry, five sam-
ples were prepared by the sol gel process with vary-
ing ratios of colloidal silica to potassium silicate from
10 to 30% and 5% intervals (i.e., 10:90, 15:85, 20:80,
25:75, and 30:70). Exact details of the sample prepara-
tion method are given elsewhere.84 The gels were dried at
70◦ to 80◦ C and then, with no other intermediate steps,
sliced into disks. Sample thicknesses were quite uniform
across the entire sample and ranged from 660 to 940 µm
between samples. Final particle densities of the precur-
sor samples were 14 to 18% of theoretical, with the 10:90
being the most dense and the 30:70 the least dense. The
scattering contrast of colloids, with respect to voids, was
calculated to be 3.48× 1030 m−4.

With such a high particle density, the samples may not
be adequately dilute to avoid either multiple scattering or
interparticle interference. Multiple scattering was mani-
fest in SAXS data recorded using 6 and 7 keV photons,
but none was observed at 10 or 11 keV. Because the poly-
dispersity of the scattering system is very large, every ma-
jor portion of the size distribution is dilute and it is as-
sumed that interparticle interaction potentials are negligi-
ble.

SAXS from the 10:90 sample with 10 keV photons,
shown in Fig. A1, and repeated with 11 keV show no
differences after collimation correction. From this it is
concluded that multiple scattering is negligible at these
two photon energies. Scattering curves from all five sam-
ples are plotted in Fig. A2. These curves have been scaled
to absolute intensity and desmeared by the author using
methods described in Chapter 3. The superb quality of
the data presented demonstrates the integrity of all com-
ponents of the small-angle X-ray scattering camera and
silicon photodiode detector as well as the numerical trans-
formations that reduce the raw data to SAXS curves.

Differences between the SAXS curves are systematic
with the sample chemistry where the 10:90 sample shows
the most scattering and the 30:70 the least, with data from
the other samples falling between. By the absence of
regularly-spaced oscillations, the underlying size distri-
butions giving rise to the scattering must be polydisperse.
Analysis of the lowest scattering vectors by the Guinier
law shows additional results that are systematic with the
sample chemistry as shown in Table A1. Further analysis
of the SAXS data by the maximum entropy method de-
scribed above is presented elsewhere.85 In conclusion, the
SANS data have confirmed the absolute intensity scaling
method of this dissertation. The SAXS data from bulk mi-
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Figure A1: Collimation-corrected SAXS of bulk microp-
orous silica sample with a ratio of colloidal silica to potas-
sium silicate of 10:90 recorded with the double-crystal
diffractometer using 10 and 11 keV X-ray photons. Be-
cause the two curves are identical, multiple scattering is
assumed to be negligible.

Table A1: Sample thickness, SAXS experimental back-
ground, and results of Guinier analyses on SAXS from
bulk microporous silica samples using 10 keV photons.
Scattering vectors 0.007 ≤ h ≤ 0.015 nm−1 were in-
cluded in the analyses.

sample thickness, µm background, m−1 Guinier radius, nm
10:90 890 4000 126
15:85 890 3750 122
20:80 660 2950 104
25:75 910 3100 93
30:70 940 3450 75

Figure A2: Collimation-corrected SAXS of bulk microp-
orous silica samples with the indicated ratio of colloidal
silica to potassium silicate recorded with the double-
crystal diffractometer using 10 keV X-ray photons.
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croporous silica samples, measured on the double-crystal
diffractometer, have been observed to be systematic with
the starting chemistry of the samples.

B Porous VycorTM Glass
The small-angle scattering from samples of porous
VycorTM glass is significantly different than that from the
steel alloys. The scatterers, pores in this case, fail some
of the most basic assumptions used to analyze the scatter-
ing in terms of a distribution of scatterers: the pores are
not dilute in concentration nor can they be expected to be
non-interacting. The pores have been modeled as a bicon-
tinuous distribution with a spinodal structure by Berk.5

Wiltzius147 reported small-angle neutron scattering data
that displayed an interference peak that was attributed to
the bicontinuous distribution. The small-angle scattering
from the porous VycorTM glass is exemplary of type 3
scattering where interference effects are present. The sec-
tion that follows has been excerpted from Mendoza.96

Using the double-crystal diffractometer at the NSLS,
SAXS was recorded from four samples of porous
VycorTM glass (PVG) of thickness ca. 50 µm provided
by M. Rafailovich of SUNY Stony Brook. The sam-
ples were: unconsolidated VycorTM glass (PVG/nC),
unconsolidated VycorTM glass impregnated with iron
oxide (PVG+FeO/nC), consolidated VycorTM glass im-
pregnated with iron oxide (PVG+FeO/C), and con-
solidated VycorTM glass impregnated with tin oxide
(PVG+SnO/C). In this context, consolidation means heat-
ing to 1200◦ C. The photon energy, 7.031 keV, was cho-
sen to be below the K absorption edge of Fe at 7.112 keV.
All four collimation-corrected SAXS curves in Fig. B3
display an interference peak at h ' 0.18 nm−1, where
h is defined as before. Results from three of the samples
(PVG/nC, PVG+FeO/nC, and PVG+SnO/C) show similar
SAXS with intensity differences which could be mostly
attributed to differences in scattering contrast and sample
thickness. The peak in the data from the fourth sample,
PVG+FeO/C, is much less pronounced. Incidentally, af-
ter the ca. one hour exposure to the monochromatic X-ray
beam, the VG+Sn/C sample was visibly discolored. The
other three samples were not visibly altered after equiva-
lent exposures.

In theory, heating a PVG sample to 1200◦ C would con-

Figure B3: Collimation-corrected SAXS from samples of
porous VycorTM glass measured with the double-crystal
diffractometer used at the National Synchrotron Light
Source, beam line X23A3. The interference peak at
h ' 0.18 nm−1 is due to a bicontinuous network of pores
with a spinodal structure. Of the two samples heated at
1200◦ C (closed symbols), only the one with FeO shows
a reduction in the height of the interference peak.
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solidate the sample and consequently cause the scattering
peak to disappear as the spinodal ordering is lost. This is
observed in the PVG+FeO/C sample; the scattering peak
is almost entirely eliminated in the SAXS from this sam-
ple. The suppression of the peak suggests that the spin-
odal structural ordering is diminished and the iron oxide
becomes a distributed component within the glass matrix.

The presence of the interference peak, and the ab-
sence of higher-order peaks, suggests that the sample mi-
crostructure can be modeled by a bicontinuous spinodal
structure as shown by Berk.5 The present data are very
similar to the small-angle neutron scattering results of
Wiltzius mentioned above in which the peak was observed
at h = 0.23 nm−1.

In both cases, the peaks in the scattering data indicate
the presence of a bicontinuous network with a spinodal
structure. This structure arises when the original borosili-
cate melt is cooled below its phase-transition temperature.
The boron-oxide / alkali-oxide phase separates and, on
acid leaching, yields a microporous network where pore
size is determined by the time in which the melt is al-
lowed to decompose. The scattering from this structure in
the immediate region of the interference peak is given by
Cahn18 and Wiltzius.147

I(h̄, t̄) =
I(0, 0)
1 + h̄2

exp
[
−2h̄2t̄(h̄2 − 1)

]
(B1)

where I(0, 0) is a normalization intensity, t̄ is the dimen-
sionless time evolved since the quench, and h̄ is the di-
mensionless scattering vector, defined as

h̄ =
hl

2π
(B2)

where h is as defined before and l is the wavelength of
composition fluctuations. SAXS data from each sample
for the range of scattering vectors 0.1 ≤ h ≤ 0.25 nm−1

were fit by a least-squares technique. The results are given
in Table B2.

SAXS from the PVG+SnO/C sample that was heated at
the consolidation temperature of 1200◦ C is quite differ-
ent from that of PVG+FeO/C sample. The broad peak at
h = 0.18 nm−1 persists despite the heat treatment. The
measured correlation length of l = 23 nm is the same
as that for unconsolidated PVG, with or without impreg-
nation of iron oxide. Thus the glass impregnated with
tin oxide apparently retains its original ordered spinodal

Table B2: Parameters obtained from least squares fitting
of desmeared SAXS data from porous VycorTM glass to
the intensity model of Wiltzius147 in the scattering vec-
tor range 0.1 ≤ h ≤ 0.25 nm−1. l is the wavelength
of composition fluctuations, t̄ is the dimensionless time
evolved since the quench, I(0, 0) is a normalization inten-
sity, and r is the regression coefficient (goodness-of-fit).
The SAXS data were recorded with the double-crystal in-
strument described earlier.

sample l, nm t̄ I(0, 0), m−1 r

PVG/nC 23.2 3.3 5.25× 105 0.987
PVG+FeO/nC 22.9 3.7 1.15× 106 0.986
PVG+FeO/C 26.4 0.7 1.00× 105 0.90
PVG+SnO/C 22.7 3.3 6.45× 105 0.989

structure. This result is further confirmed by Rutherford
backscattering.96



Appendix: Description of the Silicon
Photodiode Detector

In this section will be given the physical details of
the modular silicon photodiode X-ray detector system in-
cluding details of the implementation and exact electri-
cal schematics for the modules as they have been built.
At this time, two complete systems have been constructed
which are almost identical, differing only in the dark noise
of the photodiode itself. As such, one system is held as a
backup for the other, should a quick replacement be nec-
essary.

C Implementation of the Silicon
Photodiode Detector

The silicon photodiode detector was designed as a modu-
lar system that would provide a raw counting rate at TTL
voltage levels to standardized electronics. A block dia-
gram for this system is shown in Fig. C1. The modules
were organized by specific functions. The detector mod-
ule converts X-ray flux into a positive DC voltage pro-
portional to that flux which may be measured directly (on
a chart recorder or voltmeter) and/or sent to a voltage-
frequency converter. The VFC module accepts a posi-
tive DC voltage and converts it into a counting rate pro-
portional to the voltage. The output of the VFC is con-
nected to a counter-timer for computer data acquisition.
The amplifier sensitivity is user-adjusted by the remote
control. The power supply is a commercial unit, typical
of those required by personal computers. While the X-
ray response is different, such a modular detector system
may replace, in function, a detector chain of scintillation
counter (or proportional counter), pulse shaper, single-
channel analyzer, and corresponding high-voltage supply
without modification of other experimental hardware.

Figure C1: Block diagram for the modular silicon photo-
diode detector system. Each dashed line corresponds to a
separate module. The detector module converts X-rays to
a positive voltage which can be measured directly and/or
sent to the VFC which generates TTL voltage pulses for
standardized electronics. The remote range control allows
the user to change the amplification of the preamplifier
and draws its power from the power supply via the detec-
tor module. The power supply is a commercial unit.
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A low-noise UV photodiode (EG&G model UV 215
BQ) was selected as the photodiode. One of the possible
substitutions for this component is the Hamamatsu model
S1337 - 66BQ. The glass window was removed from the
metal case to permit absorption of X rays by the photodi-
ode. The circuit implemented, shown in Fig. C2, was the
multiple-scale CV converter electrometer. Four resistors
(scales) were used, chosen at two decade intervals. With
each scale spanning 3.5 decades, the electrometer spans
the required nine decade range while providing a reason-
able overlap between each scale for calibration. An ultra-
low bias current FET op amp (Burr Brown model OPA
128 LM) was used as the electrometer amplifier. One of
the possible substitutions for this component is the Ana-
log Devices model AD-515. The output of the electrom-
eter was inverted using a unity-gain inverting amplifier
with a low-pass filter (RC-pair) so that the output of the
detector would be between +0.0005 V to +12 V. An off-
set voltage of ca. 5 mV was added to the output of the
inverter to drive the signal positive, a requirement of the
voltage-to-frequency (VF) converter appearing later in the
circuit. The transfer function for the PD,

Vout = −αReffectiveI + Voffset, (C1)

where α is a constant of order unity.
To minimize input capacitance to the amplifier, all con-

nections from the output of the photodiode to the scale re-
sistors and to the electrometer were TeflonTM-coated wire,
no more than 1 centimeter in length, attached to TeflonTM

support posts. The circuit board was coated with a metal-
lized surface layer connected to ground potential to absorb
any surface charges.

Special consideration was given to the most sensitive
(high feedback resistance) scale of the electrometer due to
the 0.6 pA offset current of the electrometer. The voltage
generated by this current would result in a large overall
negative voltage from the inverter. A relay-selected offset
circuit was added to the inverter which overrides the stan-
dard offset circuit to drive the output voltage positive. The
99 GΩ glass-encapsulated feedback resistor was wrapped
with a few turns of bare wire connected to ground to dis-
sipate any surface charges. Because of the open-circuit
capacitance of the relays, no smoothing capacitors were
included on either of the two most sensitive scales. This
changed the time constant noticeably only for the most
sensitive scale.

Figure C2: Schematic of the CV electrometer circuit used
to measure the photocurrent. Four scales, two decades
apart, are employed to span the nine+ decades. A1 con-
verts the photocurrent to a negative voltage according to
the scale selected by the switch. A2 inverts that voltage
and applies a small offset to drive low voltages positive.
A2 also functions as a low-pass noise frequency filter. The
voltage output from A2 may be recorded directly or trans-
mitted to a voltage-frequency recorder.

The photodiode is extremely sensitive to visible light
so it was necessary to cover its face with two sheets of
aluminized MylarTM and enclose it and the electrometer
circuit in a lightproof box. By making the box out of
metal, maintained at ground potential, it can serve as an
effective Faraday cup to shield the sensitive electrometer
circuit from stray electron charges in the environment.

The photodiode and electrometer circuitry were assem-
bled on a 40 × 75 mm2 circuit board and mounted in a
standard aluminum blue box with card slots. The photo-
diode was placed directly behind a 10 mm diameter hole
drilled in one of the cover plates. The hole was covered
with two layers of aluminized MylarTM to reduce visible
light leakage into the box, as mentioned above. Control-
ling circuitry for the TTL relays was assembled on a sec-
ond circuit board and placed in the same box as the pho-
todiode. Electrical and mechanical connections between
the two boards were made by inserting the pins from two
eight-pin wire-wrap IC sockets located at opposite ends of
the upper (PD) board into similar IC sockets on the lower
(TTL) board.
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Figure D3: Modifications to the commercial regulated DC
power supply which provides power for all components in
the modular detector system.

The photodiode detector module generates an output
voltage which can be sent to a strip chart recorder and/or
to a VFC. The VFC was built in a separate box to min-
imize heat buildup within the PD housing. In opera-
tion, a scale (amplifier sensitivity) is selected by closing a
low-leakage TTL reed relay, remotely actuated by a four-
position switch. This switch is located on the end of a
20 meter cable for operation from outside of the experi-
mental hutch. It is possible to switch scales without inter-
rupting the experiment such as would have been necessary
with an SC or GPC to install or remove an attenuating foil.

Although cooling the photodiode with a thermoelectric
refrigerator can reduce its thermal noise, the benefits are
exceeded by the penalties in this application. The cir-
cuitry necessary to cool the diode is too large to fit in the
photodiode enclosure and the refrigerator would require
its own power supply. Finally, because the photodiode is
operated in air, cooling the photodiode involves the risk
of condensing water onto the surface of the photodiode.

D Circuit Diagrams for the Modu-
lar Detector

The remainder of this appendix gives the exact circuit dia-
grams for the modular detector system as it has been built.

Figure D4: Electronic circuit diagram for the upper (pho-
todiode) board in the PD detector module as built. Four
separate amplifier gain scales are used. The low-leakage
TTL relays are selected individually by driving the volt-
age to a logic “0”.
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(a)

(b)

Figure D5: Electronic circuit diagram for the lower (TTL
control) board in the PD detector module as built. In (a),
the TTL chips are used as a line buffer and a 1-of-4 de-
coder. In (b), the unity gain inverter is shown including
the details of the special circuitry to offset range #4.

(a)

(b)

Figure D6: Electronic circuit diagrams, as-built, for (a)
the remote control module, and (b) the voltage-frequency
converter. The remote control is used to select the ampli-
fier sensitivity. The output is a two-bit binary TTL signal
which value is the range number-1. The VFC is used as an
analog-to-digital converter to get the detector signal into
the beam line computer.
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E Lake.FOR: Iterative Collimation-Correction
The following computer program corrects small-angle scattering for slit-length desmearing. Comments are provided
to describe the various processes.

PROGRAM Lake
C Lake.FOR 14 November 1989
C ref: J.A. Lake; ACTA CRYST 23 (1967) 191-194.
C by: Pete R. Jemian, Northwestern University

C Also see: O. Glatter; ACTA CRYST 7 (1974) 147-153
C W.E. Blass & G.W.Halsey (1981). "Deconvolution of
C Absorption Spectra." New York City: Academic Press
C P.A. Jansson. (1984) "Deconvolution with Applications
C in Spectroscopy." New York City: Academic Press.
C G.W.Halsey & W.E. Blass. "Deconvolution Examples"
C in "Deconvolution with Applications in Spectroscopy."
C Ed. P.A. Jansson. (see above)

C Compatible with FORTRAN on:
C DEC VAX
C Macintosh, Microsoft v2.2
C Macintosh, Language Syst. v1.2.1 with MPW v. 3.0

C This program applies the iterative desmearing technique of Lake
C to small-angle scattering data. The way that the program works
C is that the user selects a file of data (x,y,dy) to be desmeared.
C If a file was not chosen, the program will end. Otherwise the
C user is then asked to specify the slit-length (in the units of the
C x-axis); the X at which to begin fitting the last data points to a
C power-law of X, the output file name, and the number of iterations
C to be run. Then the data file is opened, the data is read, and the
C data file is closed. The program begins iterating and shows an
C indicator of progress on the screen in text format.
C It is a mistake to run this program on data that has been desmeared
C at least once (by this program) as you will see. The problem is
C that the program expects that the input data has been smeared, NOT
C partially desmeared. Lake’s technique should be made to iterate
C with the original, smeared data and subsequent trial solutions
C of desmeared data.
C The integration technique used by this program to smear the data
C is the trapezoid-rule where the step-size is chosen by the
C spacing of the data points themselves. A linear
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C interpolation of the data is performed. To avoid truncation
C effects, a power-law extrapolation of the intensity
C is made for all values beyond the range of available
C data. This region is also integrated by the trapezoid
C rule. The integration covers the region from l = 0
C up to l = lo. (see routine SMEAR).
C This technique allows the slit-length weighting function
C to be changed without regard to the limits of integration
C coded into this program.

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
PARAMETER ( LakeUnit = 1, LakeFast = 2, LakeChi2 = 3)
PARAMETER ( MaxPts = 500 ) ! also in SMEAR & FindIc
CHARACTER*1 MTstr
PARAMETER (MTstr = ’ ’, iZero=0, fZero = 0.0, InfItr = 10000)
CHARACTER*80 reply

COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
COMMON /DatCom/ NumPts, iLo, iHi, h, C, dC
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY

REAL*8 h(MaxPts)
REAL*8 E(MaxPts),dE(MaxPts)
REAL*8 S(MaxPts)
REAL*8 C(MaxPts),dC(MaxPts)
REAL*8 resid(MaxPts)

C h : scattering vector, horizontal axis
C E, dE : experimental intensity and estimated error
C S : re-smeared intensity
C C, dC : corrected intensity and estimated error
C resid : normalized residuals, = (E-S)/dE

CHARACTER*80 InFile, OutFil

C Next line for Lang. Sys. v1.2.1 / MPW on Macintosh only
C Comment this out for other compilers
C This is the only compiler-dependent line in this source code!!!!!!
C CALL OutWindowScroll (1000) ! for 1-line advance screen

C Initial default answers to the user parameters
sLengt = 1.0 ! the slit length as defined by Lake
sFinal = 1.0 ! to start evaluating the constants for extrapolation
mForm = 4 ! model final data with a Porod law
LakeForm = 2 ! shows the fastest convergence most times

1 WRITE (*,*)
WRITE (*,*) ’ 14 November 1989, Lake.FOR, Pete R. Jemian’
WRITE (*,*) ’ SAS data desmearing using the iterative’,

> ’ technique of JA Lake.’
WRITE (*,*) ’ J.A. Lake; ACTA CRYST 23 (1967) 191-194.’

CALL GetInf (InFile, OutFil, sLengt, sFinal,
> NumItr, InfItr, mForm, LakeForm)

IF (InFile .EQ. MTstr) STOP
IF (NumItr .EQ. iZero) NumItr = InfItr

WRITE (*,1000) ’Input’, InFile
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1000 FORMAT (1X, A6, ’ file: ’, A60)
CALL GetDat (InFile, h, E, dE, NumPts, MaxPts)
IF (NumPts .EQ. iZero) GO TO 1
IF (sFinal .GT. h(NumPts-1)) GO TO 1

WRITE (*,*) NumPts, ’ points were read.’
WRITE (*,1000) ’Output’, OutFil
WRITE (*,*) ’ Slit length = ’, sLengt
WRITE (*,*) ’ Final form approx. will begin at ’, sFinal
IF (mForm .EQ. 1) WRITE (*,1001) ’flat background, I(h) = B.’
IF (mForm .EQ. 2) WRITE (*,1001) ’linear, I(h) = b + h * m.’
IF (mForm .EQ. 3) WRITE (*,1001) ’power law, I = b * h**m.’
IF (mForm .EQ. 4) WRITE (*,1001) ’Porod, I*h**4 = Cp+B*h**4.’

1001 FORMAT (’ Final form is ’, A40)

IF (NumItr .GE. InfItr) WRITE (*,*) ’ Infinite iterations.’
IF (NumItr .LT. InfItr) WRITE (*,*) ’ iterations =’, iterations

IF (LakeForm .EQ. LakeUnit) WRITE (*,*) ’ unit weight’
IF (LakeForm .EQ. LakeFast) WRITE (*,*) ’ fast weight’
IF (LakeForm .EQ. LakeChi2) WRITE (*,*) ’ ChiSqr weight’

C To start Lake’s method, assume that the 0-th approximation
C of the corrected intensity is the measured intensity.

DO 3 i = 1, NumPts
C(i) = E(i)
dC(i) = dE(i)

3 CONTINUE

WRITE (*,*)
WRITE (*,*) ’ Smearing to get first approximation...’
CALL Smear (S)

ChiSqr = fZero ! find the ChiSqr
DO 8 j = 1, NumPts

8 ChiSqr = ChiSqr + ((S(j) - E(j))/dE(j))**2
ChiSq0 = ChiSqr ! remember the first one

DO 4, i = 1, NumItr
WRITE (*,*)
IF (NumItr .LT. InfItr) THEN

WRITE (*,*) ’ #’, i, ’ of ’, NumItr, ’ iteration(s).’
ELSE

WRITE (*,*) ’ Iteration #’, i
END IF

WRITE (*,*) ’ Applying the iterative correction ...’

IF (LakeForm .EQ. LakeUnit) weighting = 1.0
IF (LakeForm .EQ. LakeChi2) weighting = 2*SQRT(ChiSq0/ChiSqr)

DO 7, j = 1, NumPts
IF (LakeForm .EQ. LakeFast) weighting = C(j) / S(j)
C(j) = C(j) + weighting * (E(j) - S(j))

7 CONTINUE

WRITE (*,*) ’ Examining scatter to calculate the errors...’
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CALL FixErr (NumPts, h, E, dE, C, dC)

WRITE (*,*) ’ Smearing again... ’
CALL Smear (S)

ChiSqr = fZero
DO 5, j = 1, NumPts

resid(j) = (S(j) - E(j))/dE(j)
ChiSqr = ChiSqr + resid(j)**2

5 CONTINUE
WRITE (*,*) ’ Residuals plot for iteration #’, i
CALL ResPlt (NumPts-1, resid)
WRITE (*,*) ’ ChiSquare = ’,ChiSqr,’ for ’,NumPts,’ points.’

IF (NumItr .EQ. InfItr) THEN
WRITE (*,*) ’ Save this data? (Y=yes, N=no) <N>’
reply = MTstr
READ (*,’(A1)’) reply
IF (reply .EQ. ’y’ .OR. reply .EQ. ’Y’) THEN

reply = MTstr
WRITE (*,*) ’ Output file name? ==>’, OutFil
READ (*,’(A80)’) reply
IF (reply .EQ. MTstr) reply = OutFil
CALL SavDat (reply, h, C,dC, NumPts)

93 WRITE (*,*) ’ Continue iterating? (Y,<N>)’
reply = MTstr
READ (*,’(A1)’) reply
IF (reply .EQ. ’ ’) reply = ’N’
IF (reply .EQ. ’n’) reply = ’N’
IF (reply .EQ. ’y’) reply = ’Y’
IF (reply .EQ. ’N’) GO TO 10
IF (reply .NE. ’Y’) GO TO 93

END IF
END IF

4 CONTINUE

IF (NumItr .LT. InfItr) THEN
WRITE (*,*)
WRITE (*,1000) ’Saving’, OutFil
CALL SavDat (OutFil, h, C,dC, NumPts)

END IF

10 WRITE (*,*) ’ Plot of log(desmeared intensity) vs. h ...’
DO 11 i = 1, NumPts

11 C(i) = LOG (ABS(C(i)))
CALL Plot (NumPts, h, C)

WRITE (*,*)
WRITE (*,*) ’ Same, but now log-log...’
DO 12 i = 1, NumPts

12 h(i) = LOG (ABS(h(i)))
CALL Plot (NumPts, h, C)

WRITE (*,1000) ’Last’, OutFil
GO TO 1
END
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SUBROUTINE GetInf (InFile, OutFil, sLengt, sFinal,
> NumItr, MaxItr, mForm, LakeForm)

C Get information about the desmearing parameters.
C This is designed to be independent of wavelength
C or radiation-type (i.e. neutrons, X rays, etc.)

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
CHARACTER*80 InFile, OutFil
CHARACTER*1 NoName, answer
PARAMETER (NoName=’ ’, fZero=0.0, iZero=0)
LOGICAL Guess

6 WRITE (*,*) ’ What is the data file name? <Quit>’
InFile = NoName
READ (*,’(A80)’) InFile
IF (InFile .EQ. NoName) RETURN

4 WRITE (*,*) ’ What is the output data file?’
OutFil = NoName
READ (*,’(A80)’) OutFil
IF (OutFil .EQ. NoName) GO TO 4
IF (OutFil .EQ. InFile) GO TO 6

2 WRITE (*,*) ’ What is the slit length (x-axis units)?’, sLengt
temp = fZero
READ (*,’(F15.0)’) temp
IF (temp .LT. fZero) GO TO 2
IF (temp .GT. fZero) sLengt = temp

WRITE (*,*) ’ Extrapolation forms to avoid truncation-error.’
WRITE (*,*) ’ 1 = flat background, I(h) = B’
WRITE (*,*) ’ 2 = linear, I(h) = b + h * m’
WRITE (*,*) ’ 3 = power law, I(h) = b * h**m’
WRITE (*,*) ’ 4 = Porod law, I(h) = Cp + Bkg * h**4’

21 WRITE (*,*) ’ Which form? ’, mForm
mTemp = iZero
READ (*,’(I5)’) mTemp
IF (mTemp .LT. 0 .OR. mTemp .GT. 4) GO TO 21
IF (mTemp .GT. iZero) mForm = mTemp

3 WRITE (*,*) ’ What X to begin evaluating extrapolation’,
> ’ (x-axis units)? ’, sFinal

temp = fZero
READ (*,’(F15.0)’) temp
IF (temp .LT. fZero) GO TO 3
IF (temp .GT. fZero) sFinal = temp

5 WRITE (*,*) ’ How many iteration(s)? <unlimited>’
NumItr = iZero
READ (*,’(I5)’) NumItr
IF (NumItr .LT. iZero .OR. NumItr .GT. MaxItr) GO TO 5

WRITE (*,*) ’ Weighting methods for iterative corrections:’
WRITE (*,*) ’ Correction = weight * (MeasuredI - SmearedI)’
WRITE (*,*) ’ #1) weight = 1.0’
WRITE (*,*) ’ #2) weight = CorrectedI / SmearedI’
WRITE (*,*) ’ #3) weight = 2*SQRT(ChiSqr(0) / ChiSqr(i))’
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9 WRITE (*,*) ’ Which method? ’, LakeForm
mTemp = iZero
READ (*,’(I5)’) mTemp
IF (mTemp .LT. 0 .OR. mTemp .GT. 3) GO TO 9
IF (mTemp .GT. iZero) LakeForm = mTemp

RETURN
END

SUBROUTINE FixErr (n, x, y, dy, z, dz)
C Estimate the error on Z based on data point scatter and
C previous error values and smooth that estimate.

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
REAL*8 x(1), y(1), dy(1), z(1), dz(1)

C Error based on scaled errors of smeared (input) data.
DO 1 i = 1, n

dz(i) = z(i) * dy(i) / y(i)
1 CONTINUE

C Error based on scatter of desmeared data points.
C Determine this by fitting a line to the points
C i-1, i, i+1 and take the difference. Add this to dz.

CALL SumClr
CALL SumAdd (x(1), z(1))
CALL SumAdd (x(2), z(2))
CALL SumAdd (x(3), z(3))
CALL SumLR (slope, const)
dz(1) = dz(1) + ABS (const + slope*x(1) - z(1))
dz(2) = dz(2) + ABS (const + slope*x(2) - z(2))
DO 2 i = 3, n-1

CALL SumClr
C CALL SumSub (x(i-2), z(i-2))

CALL SumAdd (x(i-1), z(i-1))
CALL SumAdd (x(i), z(i))
CALL SumAdd (x(i+1), z(i+1))
CALL SumLR (slope, const)
zNew = const + slope * x(i)
dz(i) = dz(i) + ABS (zNew - z(i))

2 CONTINUE
dz(n) = dz(n) + ABS (const + slope*x(n) - z(n))

C Smooth the error by a 3-point moving average filter.
C Do this 5 times. Don’t smooth the end points.
C Weight the data points by distanceˆ2 (as a penalty)
C using the function weight(u,v)=(1 - |1 - u/v|)**2
C By its definition, weight(x0,x0) == 1.0. I speed
C computation using this definition. Why I can’t use
C this definition of weight as a statement function
C with some compilers is beyond me!
C Smoothing is necessary to increase the error estimate
C for some grossly under-estimated errors.

DO 4 j = 1, 5
DO 3 i = 2, n-1

w1 = (1 - ABS (1 - (x(i-1)/x(i))))**2
w2 = (1 - ABS (1 - (x(i+1)/x(i))))**2
dz(i) = (w1 * dz(i-1) + dz(i) + w2 * dz(i+1))
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> / (w1 + 1.D0 + w2)
3 CONTINUE
4 CONTINUE

RETURN
END

SUBROUTINE Prep (x, y, dy, NumPts)
C Calculate the constants for an extrapolation fit
C from all the data that satisfy x(i) >= sFinal.

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
REAL*8 x(1), y(1), dy(1)
COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
CALL SumClr
DO 1, i = 1, NumPts-1

IF (x(i) .GE. sFinal) THEN
IF (mForm .EQ. 1) THEN

CALL SwtAdd (x(i), y(i), dy(i)) ! weighted
ELSE IF (mForm .EQ. 2) THEN

CALL SwtAdd (x(i), y(i), dy(i)) ! weighted
ELSE IF (mForm .EQ. 3) THEN

CALL SumAdd (LOG(x(i)), LOG(y(i))) ! un-weighted
ELSE IF (mForm .EQ. 4) THEN

h4 = x(i)**4
CALL SwtAdd (h4, y(i)*h4, dy(i)*h4) ! weighted

END IF
END IF

1 CONTINUE
IF (mForm .EQ. 1) THEN

CALL MeanXY (fSlope, fConst)
fSlope = 0.

ELSE IF (mForm .GE. 2 .AND. mForm .LE. 4) THEN
CALL SumLR (fSlope, fConst)

END IF
RETURN
END

SUBROUTINE Smear (z)
C Smear the data of C(h) into z using the slit-length
C weighting function "Plengt" and a power-law extrapolation
C of the data to avoid truncation errors. Assume that
C Plengt goes to zero for l > lo (the slit length).
C Also assume that the slit length function is symmetrical
C about l = zero.
C This routine is written so that if "Plengt" is changed
C (for example) to a Gaussian, that no further modification
C is necessary to the integration procedure. That is,
C this routine will integrate the data out to "lo".

IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
REAL*8 z(1)
COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
COMMON /DatCom/ NumPts, iLo, iHi, h, C, dC
PARAMETER ( MaxPts = 500 ) ! also in main routine
REAL*8 h(500), C(500), dC(500)
REAL*8 x(MaxPts), w(MaxPts)
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CALL Prep (h, C, dC, NumPts) ! get coefficients
IF (mForm .EQ. 1) WRITE (*,41) fConst
IF (mForm .EQ. 2) WRITE (*,42) fConst, fSlope
IF (mForm .EQ. 3) WRITE (*,43) EXP (fConst), fSlope
IF (mForm .EQ. 4) WRITE (*,44) fConst, fSlope

41 FORMAT (’ constant background fit: I = ’, 1PE15.7)
42 FORMAT (’ linear fit: I = ’, 1PE15.7, ’ + h*’, E15.7)
43 FORMAT (’ Power law fit: I = ’, 1PE15.7, ’ * h**’, 0PF10.5)
44 FORMAT (’ Porod law fit: I = ’, 1PE15.7, ’ + h**4 * ’, E15.7)

hLo = h(1)
ratio = sLengt / (h(NumPts) - hLo)
DO 1 i = 1, NumPts

x(i) = ratio * (h(i) - hLo) ! values for "l"
w(i) = Plengt (x(i)) ! probability at "l"

1 CONTINUE

w(1) = w(1) * (x(2) - x(1))
DO 2 i = 2, NumPts-1

w(i) = w(i) * (x(i+1) - x(i-1)) ! step sizes
2 CONTINUE

w(NumPts) = w(NumPts) * (x(NumPts) - x(NumPts-1))

DO 3 i = 1, NumPts ! evaluate each integral
hNow = h(i) ! ... using trapezoid rule
sum = w(1) * FindIc (hNow, x(1))
DO 4 k = 2, NumPts-1

sum = sum + w(k) * FindIc (hNow, x(k))
4 CONTINUE

z(i) = sum + w(NumPts) * FindIc (hNow, x(NumPts))
3 CONTINUE

RETURN
END

REAL*8 FUNCTION Plengt (x)
C Here is the definition of the slit-length weighting function.
C It is defined for a rectangular slit of length 2*sLengt
C and probability 1/(2*sLengt). It is zero elsewhere.
C It is not necessary to change the limit of the integration
C if the functional form here is changed. You may, however,
C need to ask the user for more parameters. Pass these
C around to the various routines through the use of the
C /PrepCm/ COMMON block.

IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
IF (ABS(x) .GT. sLengt) THEN

z = 0.0
ELSE

z = 0.5 / sLengt
END IF
Plengt = z
RETURN
END
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REAL*8 FUNCTION FindIc(x, y)
C Determine the "corrected" intensity at u = SQRT (x*x + y*y)
C Note that only positive values of "u" will be searched!

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /PrepCm/ sLengt, sFinal, fSlope, fConst, mForm
COMMON /DatCom/ NumPts, iLo, iHi, h, C, dC
PARAMETER ( MaxPts = 500 ) ! also in main routine
REAL*8 h(500), C(500), dC(500)
GetIt(x,x1,y1,x2,y2) = y1 + (y2-y1) * (x-x1) / (x2-x1)

u = SQRT (x*x + y*y) ! circularly symmetric
CALL BSearch (u, h, NumPts, iLo, iHi, iTest) ! find index
IF (iTest .LT. 1) THEN

WRITE (*,*) ’ Bad value of U or array H in routine FindIc’
STOP

END IF
IF (iTest .LE. NumPts) THEN

IF (u .EQ. h(iLo)) THEN
value = C(iLo) ! exactly!

ELSE ! linear interpolation
value = GetIt(u, h(iLo),C(iLo), h(iHi),C(iHi))

END IF
ELSE ! functional extrapolation

IF (mForm .EQ. 1) THEN
value = fConst

ELSE IF (mForm .EQ. 2) THEN
value = fConst + fSlope * u

ELSE IF (mForm .EQ. 3) THEN
value = EXP (fConst + fSlope * LOG (u))

ELSE IF (mForm .EQ. 4) THEN
value = fSlope + fConst / u**4 ! modified form!

END IF
END IF
FindIC = value
RETURN
END

C Pete R. Jemian, 15 May 1989
C The routines that follow are part of my general
C mathematical "toolbox". Some of them are taken
C (with reference) from book(s) but most, I have
C developed on my own. They are modular in construction
C so that they may be improved, as needed.

SUBROUTINE BSearch (z, x, NumPts, iLo, iHi, iTest)
C Search the array "x" for (iLo) <= z < x(iHi)
C On exit, iLo and iHi will exactly bracket the datum
C and iTest will be the same as iLo.
C If z is below [above] the range, iTest = -1 [NumPts+1].

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
REAL*8 x(1)



98 APPENDIX: FORTRAN COMPUTER PROGRAMS

iTest = -1 ! assume that z < x(1) and test
IF (z .LT. x(1)) RETURN
iTest = NumPts + 1 ! assume z > x(n) and test
IF (z .GT. x(NumPts)) RETURN
IF (iLo .LT. 1 .OR. iHi .GT. NumPts .OR. iLo .GE. iHi) THEN

iLo = 1
iHi = NumPts

END IF
1 IF (z .LT. x(iLo)) THEN ! expand down?

iLo = iLo / 2
GO TO 1

END IF
2 IF (z .GT. x(iHi)) THEN ! expand up?

iHi = (iHi + 1 + NumPts) / 2
GO TO 2

END IF
3 iTest = (iLo + iHi) / 2

IF (z .GE. x(iTest)) THEN ! which half?
iLo = iTest

ELSE
iHi = iTest

END IF
IF (iHi - iLo .GT. 1) GO TO 3
RETURN
END

SUBROUTINE GetDat (InFile, x, y, dy, n, MaxPts)
CHARACTER*80 InFile
REAL*8 x(1), y(1), dy(1)
INTEGER*4 n, MaxPts
PARAMETER (ioPath = 1)
OPEN (UNIT = ioPath, FILE = InFile, STATUS = ’old’)
DO 1 n = 1, MaxPts

READ (ioPath, *, END = 2, ERR = 3) x(n), y(n), dy(n)
1 CONTINUE
2 n = n - 1 ! ignore any lines without an explicit EOL mark

CLOSE (UNIT = ioPath, STATUS = ’keep’)
RETURN

3 n = 0 ! ignore any/all data yet received
CLOSE (UNIT = ioPath, STATUS = ’keep’)
RETURN
END

SUBROUTINE SavDat (OutFil, x, y, dy, n)
CHARACTER*80 OutFil
REAL*8 x(1), y(1), dy(1)
INTEGER*4 n
CHARACTER*1 Tab
PARAMETER (ioPath = 1)
Tab = CHAR(9)
OPEN (UNIT = ioPath, FILE = OutFil, STATUS = ’new’)

DO 2, i = 1, n
WRITE (ioPath, 1) x(i), Tab, y(i), Tab, dy(i)

1 FORMAT (1X, 1PE15.7, 2(A1, E15.7))
2 CONTINUE
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CLOSE (UNIT = ioPath, STATUS = ’keep’)
RETURN
END

INTEGER*4 FUNCTION Imax (a,b)
INTEGER*4 a, b, c
c = a
IF (b .GT. a) c = b
Imax = c
RETURN
END

INTEGER*4 FUNCTION Imin (a,b)
INTEGER*4 a, b, c
c = a
IF (b .LT. a) c = b
Imin = c
RETURN
END

SUBROUTINE Iswap (a,b)
INTEGER*4 a, b, c
c = a
a = b
b = c
RETURN
END

SUBROUTINE Plot (n,x,y)
C Make a scatter plot on the default display device (UNIT=*).
C MaxRow and MaxCol correspond to the display dimensions.

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
REAL*8 x(1), y(1)
PARAMETER (MaxCol = 75, MaxRow = 19)
PARAMETER (MxC2 = MaxCol+2, MxR2 = MaxRow+2)
CHARACTER*1 screen(MxR2, MxC2), Blank, Symbol
CHARACTER*1 hBordr, vBordr
PARAMETER (Blank = ’ ’, Symbol = ’O’)
PARAMETER (hBordr = ’-’, vBordr = ’|’)

C prepare the "screen" for drawing
DO 1 j = 1, MxC2

DO 1 i = 1, MxR2
screen(i,j) = Blank

1 CONTINUE
DO 2 i = 2, MaxCol+1

screen(MxR2,i) = hBordr
2 screen(1,i) = hBordr

DO 3 i = 2, MaxRow+1
screen(i,MxC2) = vBordr

3 screen(i,1) = vBordr

C get the data limits
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xMin = x(1)
xMax = x(1)
yMin = y(1)
yMax = y(1)
DO 4 i = 2, n

IF (x(i).GT.xMax) xMax=x(i)
IF (x(i).LT.xMin) xMin=x(i)
IF (y(i).GT.yMax) yMax=y(i)
IF (y(i).LT.yMin) yMin=y(i)

4 CONTINUE
ColDel = (MaxCol - 1) / (xMax - xMin)
RowDel = (MaxRow - 1) / (yMax - yMin)

C data scaling functions are offset by +1 for plot frame
DO 5 i = 1, n

mCol = 1 + INT((x(i) - xMin)*ColDel + 1)
mRow = 1 + INT((y(i) - yMin)*RowDel + 1)

5 screen(mRow, mCol) = Symbol

C convey the "screen" to the default output
WRITE (*,*) 1./ColDel, ’ units per column’
WRITE (*,*) 1./RowDel, ’ units per row’
DO 6 i = MaxRow + 2, 1, -1

6 WRITE (*,*) (screen(i,j), j = 1, MaxCol + 2)
RETURN
END

SUBROUTINE ResPlt (n, x)
C Draw a plot of the standardized residuals on the screen.
C Mark the rows of + and - one standard deviation.

IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
REAL*8 x(1)
PARAMETER (MaxCol = 75, MaxRow = 15)
PARAMETER (MxC2 = MaxCol+2, MxR2 = MaxRow+2)
CHARACTER*1 screen(MxR2, MxC2), Blank, Symbol
CHARACTER*1 hBordr, vBordr, resSym
PARAMETER (Blank = ’ ’, Symbol = ’O’, resSym = ’=’)
PARAMETER (hBordr = ’-’, vBordr = ’|’)

C Find out how many points to pack per column and how many columns
nPack = 1 + INT(FLOAT (n) / MaxCol - 1./n)
nCol = INT((n - 1./n)/nPack + 1)

C prepare the "screen" for drawing
DO 1 j = 1, nCol + 2

DO 1 i = 1, MxR2
screen(i,j) = Blank

1 CONTINUE
DO 2 i = 2, nCol + 1

screen(MxR2,i) = hBordr
2 screen(1,i) = hBordr

DO 3 i = 2, MaxRow + 1
screen(i,nCol+2) = vBordr

3 screen(i,1) = vBordr
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C get the data limits
xMax = 1.
xMin = -1.
DO 4 i = 1, n

IF (x(i).GT.xMax) xMax=x(i)
IF (x(i).LT.xMin) xMin=x(i)

4 CONTINUE
RowDel = (MaxRow - 1) / (xMax - xMin)

C show the standard deviation bars
mPlus = 1 + INT((1.D0 - xMin)*RowDel + 1)
mMinus = 1 + INT((-1.D0 - xMin)*RowDel + 1)
DO 5 i = 2, nCol + 1

screen(mMinus,i) = resSym
5 screen(mPlus,i) = resSym

C draw the data (overdrawing the residuals bars if necessary)
C data scaling functions (offset by +1 for the plot frame)

DO 6 i = 1, n
mCol = 1 + INT((i - 1./n)/nPack + 1)
mRow = 1 + INT((x(i) - xMin)*RowDel + 1)

6 screen(mRow, mCol) = Symbol

C convey the "screen" to the default output
WRITE (*,*) nPack, ’ point(s) per column’
WRITE (*,*) 1./RowDel, ’ standard deviations per row’
DO 7 i = MxR2, 1, -1

7 WRITE (*,*) (screen(i,j), j = 1, nCol + 2)

RETURN
END

C Implement a set of statistics registers in the
C style of a pocket calculator.
C The routines that are available are:
C SumClr : clear the stats registers
C SumAdd : add an X,Y pair
C SwtAdd : add an X,Y pair with weight Z
C SumSub : remove an X,Y pair
C SwtSub : remove an X,Y pair with weight Z
C MeanXY : arithmetic mean of X & Y
C SDevXY : standard deviation of X & Y
C SErrXY : standard error of X & Y
C SumLR : linear regression
C VarLR : variance in linear regression constants
C CorLR : correlation coefficient of X & Y data
C CorCoe : cor. coeff. of errors in slope and intercept

SUBROUTINE SumClr
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
PARAMETER (fZero = 0.0)
count = fZero
sumX = fZero
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sumX2 = fZero
sumY = fZero
sumY2 = fZero
sumXY = fZero
RETURN
END

SUBROUTINE SumAdd (x, y)
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
DATA one /1.0/
CALL SwtAdd (x, y, one) ! unit weighting
RETURN
END

SUBROUTINE SwtAdd (x, y, z)
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
weight = 1/z**2
xWt = x * weight
yWt = y * weight
count = count + weight
sumX = sumX + xWt
sumX2 = sumX2 + xWt*xWt
sumY = sumY + yWt
sumY2 = sumY2 + yWt*yWt
sumXY = sumXY + xWt*yWt
RETURN
END

SUBROUTINE SumSub (x, y)
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
DATA one /1.0/
CALL SwtSub (x, y, one) ! unit weighting
RETURN
END

SUBROUTINE SwtSub (x, y, z)
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
weight = 1/z**2
xWt = x * weight
yWt = y * weight
count = count - weight
sumX = sumX - xWt
sumX2 = sumX2 - xWt*xWt
sumY = sumY - yWt
sumY2 = sumY2 - yWt*yWt
sumXY = sumXY - xWt*yWt
RETURN
END

SUBROUTINE MeanXY (xMean, yMean) ! arithmetic mean of X & Y
IMPLICIT REAL*8 (A-H, O-Z)



E. LAKE.FOR: ITERATIVE COLLIMATION-CORRECTION 103

IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
xMean = sumX / count
yMean = sumY / count
RETURN
END

SUBROUTINE SDevXY (xDev, yDev) ! standard deviation on X & Y
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
xDev = 0.
IF (sumX2 .GT. ((sumX**2)/count) )

> xDev = SQRT(( sumX2 - ( (sumX**2)/count) )/count)
yDev = 0.
IF (sumY2 .GT. ((sumY**2)/count) )

> yDev = SQRT(( sumY2 - ((sumY**2)/count) )/count)
RETURN
END

SUBROUTINE SErrXY (xErr, yErr) ! standard error on X & Y
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
xErr = 0.
IF (sumX2 .GT. ((sumX**2)/count) )

> xErr = SQRT(( sumX2 - ( (sumX**2)/count) )/( count-1 ))
yErr = 0.
IF (sumY2 .GT. ((sumY**2)/count) )

> yErr = SQRT(( sumY2 - ((sumY**2)/count) )/( count-1 ))
RETURN
END

SUBROUTINE SumLR (slope, const) ! linear regression
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
determ = (count*sumX2 - sumX**2)
slope = (count*sumXY - sumX*sumY) / determ
const = (sumX2*sumY - sumX*sumXY) / determ
RETURN
END

SUBROUTINE VarLR (slope, const) ! est. errors of slope & intercept
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
determ = (count*sumX2 - sumX**2)
slope = SQRT (count / determ)
const = SQRT (sumX2 / determ)
RETURN
END

REAL*8 FUNCTION CorLR ! the regression coefficient
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
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VarX = count * sumX2 - sumX**2
VarY = count * sumY2 - sumY**2
CorLR = (count * sumXY - sumX*sumY) / SQRT (VarX * VarY)
RETURN
END

REAL*8 FUNCTION CorCoe ! relation of errors in slope & intercept
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /stats/ count, sumX, sumX2, sumY, sumY2, sumXY
CorCoe = -sumX / SQRT (count * sumX2)
RETURN
END
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F MaxSas.FOR: Size Distribution Analysis
The following computer program interprets small-angle scattering in terms of scattering from a distribution of scatter-
ers of a specified shape by means of the maximum entropy method. This code is an adaptation of Maxe.FOR from
the UKAEA-Harwell Laboratory. Comments have been added to describe some of the various processes.

PROGRAM MaxSAS
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
CHARACTER*25 ProgVers, EditDate
PARAMETER (ProgVers = ’3.0 (PRJ)’)
PARAMETER (EditDate = ’27 November 1989’)

C Analysis of small-angle scattering data using the technique of
C entropy maximization.

C Credits:
C G.J. Daniell, Dept. of Physics, Southampton University, UK
C J.A. Potton, UKAEA Harwell Laboratory, UK
C I.D. Culverwell, UKAEA Harwell Laboratory, UK
C G.P. Clarke, UKAEA Harwell Laboratory, UK
C A.J. Allen, UKAEA Harwell Laboratory, UK
C P.R. Jemian, Northwestern University, USA

C References:
C 1. J Skilling and RK Bryan; MON NOT R ASTR SOC
C 211 (1984) 111 - 124.
C 2. JA Potton, GJ Daniell, and BD Rainford; Proc. Workshop
C Neutron Scattering Data Analysis, Rutherford
C Appleton Laboratory, UK, 1986; ed. MW Johnson,
C IOP Conference Series 81 (1986) 81 - 86, Institute
C of Physics, Bristol, UK.
C 3. ID Culverwell and GP Clarke; Ibid. 87 - 96.
C 4. JA Potton, GK Daniell, & BD Rainford,
C J APPL CRYST 21 (1988) 663 - 668.
C 5. JA Potton, GJ Daniell, & BD Rainford,
C J APPL CRYST 21 (1988) 891 - 897.

C This progam was written in BASIC by GJ Daniell and later
C translated into FORTRAN and adapted for SANS analysis. It
C has been further modified by AJ Allen to allow use with a
C choice of particle form factors for different shapes. It
C was then modified by PR Jemian to allow portability between
C the Digital Equipment Corporation VAX and Apple Macintosh
C computers.
C The input data file format is three columns of "Q I dI" which
C are separated by spaces or tabs. There is no header line
C in the input data file.

PARAMETER (cm2m = 0.01) ! convert cm to m units, but why?
PARAMETER (MaxPts = 300, MaxBin = 102)
PARAMETER (isLin = 1, isLog = 2, ioUnit = 1)

C point-by-point mapping between reciprocal and real space
COMMON /space1/ grid
DIMENSION grid(MaxBin,MaxPts)

C terms used in entropy maximization
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COMMON /space5/ chisq, chtarg, chizer, fSum, blank
COMMON /space2/ beta, c1, c2, s1, s2
DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)

C terms used only by subroutine MaxEnt, allocated here to make memory tidy
COMMON /space3/ ox, z, cgrad, sgrad, xi, eta
DIMENSION ox(MaxPts), z(MaxPts)
DIMENSION cgrad(MaxBin), sgrad(MaxBin)
DIMENSION xi(MaxBin,3), eta(MaxPts,3)

C space for the plotting frame, allocated here to make memory tidy
C note the limits: MaxCol <= 100, MaxRow <= 150 (really large screens!)

PARAMETER (MaxCol = 75, MaxRow = 15)
PARAMETER (MxC2 = MaxCol+2, MxR2 = MaxRow+2)
COMMON /space4/ screen, nCol, nRow, nCol2, nRow2
CHARACTER*1 screen(100, 150)

C space for main segment arrays
DIMENSION q(MaxPts), datum(MaxPts), sigma(MaxPts)
DIMENSION r(MaxBin), f(MaxBin), base(MaxBin), dNdr(MaxBin)
DIMENSION fit(MaxPts), BinWid(MaxPts)
CHARACTER*40 InFile, OutFil
LOGICAL Yes
CHARACTER*1 YN, aTab

DATA one, zero /1.0, 0.0/ ! compiler-independence!
DATA hrDamp /8.0/ ! model 7: sets transition range
DATA htDamp /0.9/ ! model 7: amount of damping

C The value "hrDamp" sets the range where the transistion occurs.
C The value "htDamp" sets the maximum proportion of damping.

C ... Define (initially) the default responses
DATA iOption /4/ ! usual form factor for spheres
DATA Aspect /1.0/ ! particle aspect ratio
DATA LinLog /isLin/ ! linear binning scale
DATA n /40/ ! number of bins
DATA Dmin, Dmax /8.00, 400.0/ ! particle diameters
DATA IterMax /20/ ! maximum number of iterations to try
DATA RhoSq /1.0/ ! scattering contrast, x10**28 1/m**4
DATA fac, err /1.0, 1.0/ ! scalars for intensity and errors
DATA qMin, qMax /1.e-8, 100./ ! range to accept
DATA Bkg /0.0/ ! intensity to subtract
DATA sLengt /100.0/ ! rectangular slit-length, 1/A

C Next line for MPW/Language Systems version 1.2.1, Macintosh only
C Comment this out for other compilers
C This is the only compiler-dependent line in this source code!!!!!!
C CALL OutWindowScroll (1000) ! for 1-line advance screen

pi = 4. * ATAN(1.)
aTab = CHAR (9)

C screen dimension variables for plots, in COMMON /space4/
nCol = MaxCol
nRow = MaxRow
nCol2 = MxC2
nRow2 = MxR2
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1 WRITE (*,*)
WRITE (*,*) ’Size distributions from SAS data using the’,

> ’ maximum entropy criterion’
WRITE (*,*) ’ version: ’, ProgVers
WRITE (*,*) ’ Last edited: ’, EditDate

CALL GetInf (InFile, OutFil, iOption, Aspect, LinLog,
> n, Dmin, Dmax, IterMax, RhoSq, fac, err, qMin,
> qMax, Bkg, sLengt)

IF (InFile .EQ. ’ ’) STOP

C Read in the SAS data from the file "InFile"
WRITE (*,*) ’ Reading from file: ’, InFile
OPEN (UNIT = ioUnit, FILE = InFile, STATUS = ’old’)
DO 94 j = 1, MaxPts

READ (ioUnit, *, END = 95) q(j), datum(j), sigma(j)
94 CONTINUE
95 npt=j-1 ! ignore any lines without an explicit EOL mark

CLOSE (UNIT = ioUnit, STATUS = ’keep’)
WRITE (*,*) npt, ’ points were read from the file’

C Subtract background, convert to 1/m units and
C shift for the selected data range

i = 0
DO 2 j = 1, npt

IF (q(j) .GE. Qmin .AND. q(j) .LE. Qmax) THEN
i = i + 1
q(i) = q(j)
datum(i) = fac * (datum(j)-Bkg) / cm2m
sigma(i) = fac * err * sigma(j) / cm2m

END IF
2 CONTINUE

npt = i
WRITE (*,*) npt, ’ points were selected from the data’

C PRJ: 24 May 1989
C BinWid: actual radial width of the indexed bin number
C Step: radial increment factor (for geometric series)
C rWid: radial width (for algebraic series)

IF (LinLog .EQ. isLog) THEN ! geometric series
Step = (Dmax/Dmin)**(1. / FLOAT(n-1)) - 1.
rWid = 0.

ELSE ! algebraic series
Step = 0.
rWid = 0.5*(Dmax - Dmin) / FLOAT(n-1)

END IF
r(1) = 0.5 * Dmin
BinWid(1) = r(1) * Step + rWid
DO 48 i = 2, n

r(i) = r(i-1) + BinWid(i-1)
BinWid(i) = r(i) * Step + rWid

48 CONTINUE

WRITE (*,*) ’ Preparation of the GRID function...’
C Calculate the form-factor pre-terms

111 IF (iOption .EQ. 1) THEN ! Rods, using model of AJ Allen
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alphan1 = 2. * pi * Aspect
alphan2 = 4. * pi
preform = alphan1
sLengt = 0. ! "pinhole" collimation

ELSE IF (iOption .EQ. 2) THEN ! Disks, using model of AJ Allen
alphan1 = 2. * pi / (Aspect**2)
alphan2 = 2. * pi
preform = alphan1
sLengt = zero

ELSE IF (iOption .EQ. 3) THEN ! Globules, using model of AJ Allen
alphan1 = 4. * pi * Aspect / 3.
IF (Aspect .LT. 0.99) THEN ! hamburger-shaped

sqqt = SQRT (one - Aspect**2)
argument = (2. - Aspect**2 + 2. * sqqt) / (Aspect**2)
surchi = (one + Aspect**2 * LOG(argument) / (2.*sqqt) )

> / (2. * Aspect)
ELSE IF (Aspect .GT. 1.01) THEN ! peanut shaped

sqqt = SQRT(Aspect**2 - one)
argument = sqqt / Aspect
surchi = (one + Aspect**2 * ASIN(argument) / sqqt)

> / (2. * Aspect)
ELSE ! spheroidal

surchi = one
END IF
alphan2 = 6. * pi * surchi
preform = alphan1
sLengt = zero

ELSE IF (iOption .EQ. 4) THEN ! Spheres, delta-function
alphan1 = 4. * pi / 3.
alphan2 = 6. * pi
preform = 9. * alphan1
sLengt = zero

ELSE IF (iOption .EQ. 5) THEN ! Spheres, box-distribution
alphan1 = 4. * pi / 3. ! This model by PRJ
alphan2 = 6. * pi
preform = 48. * pi
sLengt = zero

ELSE IF (iOption .EQ. 6) THEN ! smeared, spheroidal globs
preform = 4. * Pi / 3. ! This model by PRJ
alphan1 = preform
alphan2 = 6. * Pi
Cgs = SQRT (3. * Pi) ! for low-Q region
Cps = 9. * Pi / 4. ! for med. high-Q region
Cp = 9. / 2. ! for high-Q region

ELSE IF (iOption .EQ. 7) THEN ! spheroidal globs, no smearing
preform = 4. * Pi / 3. ! This model by PRJ
alphan1 = preform
alphan2 = 6. * Pi
sLengt = zero

END IF

C alphaN1 is RhoSq * the particle volume
C alphaN2 is RhoSq * the particle surface area / the particle volume
C ... and later divided by q**4

alphan1 = cm2m * alphan1 * rhosq * r(1)**3
alphan2 = cm2m * alphan2 * rhosq / r(n)
preform = cm2m * preform * rhosq
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DO 226 i = 1, n
rCubed = r(i)**3
DO 226 j = 1, npt

Qr = q(j) * r(i)
IF (iOption .EQ. 1) THEN

QH = q(j) * Aspect * r(i) ! rod 1/2 - length
topp = one + 2.*Pi* QH**3 * Qr / (9 * (4 + Qr**2))

> + (QH**3 * Qr**4) / 8.
bott = one + QH**2 * (one + QH**2 * Qr)/9

> + (QH**4 * Qr**7) / 16
ELSE IF (iOption .EQ. 2) THEN

h = r(i) ! disk 1/2 - thickness
Rd = h / Aspect ! disk radius
Qh = q(j) * h
QRd = q(j) * Rd
topp = one + QRd**3 / (3. + Qh**2)

> + (Qh**2 * QRd / 3.)**2
bott = one + QRd**2 * (one + Qh * QRd**2) / 16

> + (Qh**3 * QRd**2 / 3.)**2
ELSE IF (iOption .EQ. 3) THEN

topp = one
bott = one + Qr**2 * (2. + Aspect**2) / 15.

> + 2. * Aspect * Qr**4 / (9. * surchi)
ELSE IF (iOption .EQ. 4) THEN

topp = (SIN(Qr) - Qr * COS(Qr))**2
bott = Qr**6

ELSE IF (iOption .EQ. 5) THEN
Qj = q(j)
rP = r(i) + BinWid(i)
rM = r(i)
bP = 0.5*rP + (Qj**2)*(rP**3)/6.

> + (0.25*(Qj * rP**2) - 0.625/Qj) * SIN (2.*Qj*rP)
> + 0.75 * rP * COS (2.*Qj*rP)

bM = 0.5*rM + (Qj**2)*(rM**3)/6.
> + (0.25*(Qj * rM**2) - 0.625/Qj) * SIN (2.*Qj*rM)
> + 0.75 * rM * COS (2.*Qj*rM)

topp = bP - bM
bott = Qj**6 * (rP**4 - rM**4) * rCubed

ELSE IF (iOption .EQ. 6) THEN
rL = r(i) * sLengt
topp = Cgs
bott = rL*(one + (Qr**2)/5. + Cgs/Cps * Qr**3)

> + Cgs/Cp * Qr**4
ELSE IF (iOption .EQ. 7) THEN

C The value "hrDamp" sets the range where the transistion occurs.
C The value "htDamp" sets the maximum proportion of damping.
C The weight is a "step" function with a broad edge.

weight = htDamp * EXP (-((Qr/hrDamp)**2)) + (one - htDamp)
topp = 3. * (SIN(Qr) - Qr * COS(Qr)) / Qr**3
bott = 4.5 / Qr**4 ! bott=<topp**2> for large Qr
topp = weight * topp**2 + (one-weight) / (one + one/bott)
bott = one

END IF
grid(i,j) = preform * rCubed * topp / bott

C factors of 4Pi/3 are already included in "preform"
226 CONTINUE
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C Attempt to account for scattering from very large and very small
C particles by use of the limiting forms of grid(i,j).

DO 227 j = 1, npt
grid(n+1,j) = alphan1 ! next line accounts for a slit-length
grid(n+2,j) = alphan2 / (q(j)**3 * SQRT(q(j)**2 + sLengt**2))

227 CONTINUE

C Try to solve the problem
228 basis = 1.0e-12 / RhoSq ! Originally was 1.0e-6

CALL MaxEnt (n+2,npt, f,datum,sigma, basis,base, max,itermax)

C "Max" counts the number of iterations inside MAXENT.
C If Max < IterMax, then the problem has been solved.

IF (max .GE. itermax) THEN
WRITE (*,*) ’ No convergence! # iter. = ’, max
WRITE (*,*) ’ File was: ’, InFile
GO TO 1

END IF

C Otherwise, SUCCESS!... so calculate the volume distribution
C from the model SAS data

CALL opus (n+2, npt, f, fit)

C ... and remove the bin width effect.
C Also, calculate the total volume fraction, the mode, mean, and
C standard deviations of the volume and number distributions.

SumV = zero
SumVR = zero
SumVR2 = zero
SumN = zero
SumNR = zero
SumNR2 = zero
modeV = 1
modeN = 1
DO 1919 i = 1, n

size = r(i)
frac = f(i)
pVol = 4*Pi/3 * (size * 1.e-8)**3 ! particle volume, cm**3
IF (iOption .EQ. 1) pVol = pVol * Aspect ! rods
IF (iOption .EQ. 2) pVol = pVol / Aspect ! disks
IF (iOption .EQ. 3) pVol = pVol * Aspect ! globs
amount = frac / pVol ! number / cm**3
f(i) = frac / BinWid(i)
dNdr(i) = amount / BinWid(i)
IF (i .GT. 3) THEN ! ignore 1st few bins

SumN = SumN + amount
SumNR = SumNR + amount * size
SumNR2 = SumNR2 + amount * size**2

END IF
IF (dNdr(i) .GT. dNdr(modeN)) modeN = i ! get the mode
SumV = SumV + frac
SumVR = SumVR + frac * size
SumVR2 = SumVR2 + frac * size**2
IF (f(i) .GT. f(modeV)) modeV = i ! get the mode

1919 CONTINUE
DnMean = 2.0 * SumNR / SumN



F. MAXSAS.FOR: SIZE DISTRIBUTION ANALYSIS 111

DnSDev = 2.0 * SQRT((SumNR2 / SumN) - (SumNR / SumN)**2)
DvMean = 2.0 * SumVR / SumV
DvSDev = 2.0 * SQRT((SumVR2 / SumV) - (SumVR / SumV)**2)

Entropy = zero
DO 1920 i = 1, n

frac = BinWid(i) * f(i) / SumV ! Skilling & Bryan, eq. 1
Entropy = Entropy - frac * LOG (frac)

1920 CONTINUE

C Show the final distribution, corrected for bin width.

WRITE (*,*)
WRITE (*,*) ’ Input file: ’, InFile
WRITE (*,*) ’ Volume weighted size dist.: V(r)N(r) versus r’
CALL Plot (n, r, f)

C Estimate a residual background that remains in the data.
Sum1 = zero
Sum2 = zero
DO 918 j = 1, npt

weight = one / (sigma(j)**2)
Sum1 = Sum1 + weight * (fit(j) - datum(j))
Sum2 = Sum2 + weight

918 CONTINUE
shift = Sum1 / Sum2

C Scale the data back to 1/cm units and calculate Chi-squared
ChiSq = zero
Chi2Bk = zero
DO 919 j = 1, npt

z(j) = (datum(j) - fit(j)) / sigma(j)
ChiSq = ChiSq + z(j)**2
Chi2Bk = Chi2Bk + (z(j) + shift/ sigma(j))**2
datum(j) = cm2m * datum(j)
sigma(j) = cm2m * sigma(j)
fit(j) = cm2m * fit(j)

919 CONTINUE
shift = cm2m * shift / fac

WRITE (*,*) ’ standardized residuals vs. point number’
CALL ResPlt (npt, z)

C Let the file output begin!

OPEN (UNIT = ioUnit, FILE=OutFil, STATUS=’new’)
WRITE (ioUnit,*) ’ Results of maximum entropy analysis of SAS’
WRITE (ioUnit,*) ’ version ’,ProgVers, ’, edited:’, EditDate
WRITE (ioUnit,*)
WRITE (ioUnit,*) ’ input file: ’, aTab, InFile
WRITE (ioUnit,*) ’ output file: ’, aTab, OutFil
WRITE (ioUnit,*) ’ --------------------------------------------’
WRITE (ioUnit,*)
WRITE (ioUnit,*) ’ N(D) dD is number of particles/cm**3’
WRITE (ioUnit,*) ’ of size between D and D + dD’
WRITE (ioUnit,*)
WRITE (ioUnit, 35591) ’D, A’, aTab, ’V(D)*N(D), 1/A’,
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> aTab, ’N(D), 1/A/cmˆ3’
WRITE (ioUnit, 35591) ’----’, aTab, ’--------------’,

> aTab, ’--------------’
35591 FORMAT (1X, A12, A1, 1X, A15, A1, 1X, A15)

DO 1001 i = 1, n
1001 WRITE (ioUnit,3559) 2.*r(i), aTab, 0.5*f(i), aTab, 0.5*dNdr(i)
3559 FORMAT (1X, F12.2, A1, 1X, 1PE15.5, A1, 1X, E15.5)

WRITE (ioUnit,’(///)’)
WRITE (ioUnit, 1011) ’Q 1/A’, aTab, ’I 1/cm’, aTab,

> ’ˆI 1/cm’, aTab, ’dI 1/cm’, aTab, ’z’
WRITE (ioUnit, 1011) ’-----’, aTab, ’------’, aTab,

> ’-------’, aTab, ’-------’, aTab, ’----’
1011 FORMAT (A12, 3(A1, A12), 1X, A1, A12, 1X, A1, A12)

DO 101 j = 1, npt
101 WRITE (ioUnit,560) q(j), aTab, datum(j), aTab, fit(j),

> aTab, sigma(j), aTab, z(j)
560 FORMAT (1PE12.4, 3(A1, E12.4), 1X, A1, 0PF12.6, 1X, A1, F12.6)

WRITE (ioUnit,3301) InFile
WRITE (*,3301) InFile

3301 FORMAT (//’ Input data: ’, A40)

WRITE (ioUnit,3302) RhoSq
WRITE (*,3302) RhoSq

3302 FORMAT (’ Contrast = ’, F15.7,’ x 10ˆ28 mˆ-4.’)

IF (iOption .EQ. 1) THEN
WRITE (ioUnit,*) ’ rods: dia=D, length=D*’, Aspect
WRITE (*,*) ’ rods: dia=D, length=D*’, Aspect

ELSE IF (iOption .EQ. 2) THEN
WRITE (ioUnit,*) ’ disks: thickness=D, dia=D/’, Aspect
WRITE (*,*) ’ disks: thickness=D, dia=D/’, Aspect

ELSE IF (iOption .EQ. 3) THEN
WRITE (ioUnit,*) ’ globs: D x D x D*’, Aspect
WRITE (*,*) ’ globs: D x D x D*’, Aspect

ELSE IF (iOption .EQ. 4) THEN
WRITE (ioUnit,*) ’ delta-function Spheres: diameter=D’
WRITE (*,*) ’ delta-function Spheres: diameter=D’

ELSE IF (iOption .EQ. 5) THEN
WRITE (ioUnit,*) ’ box-function Spheres: diameter=D’
WRITE (*,*) ’ box-function Spheres: diameter=D’

ELSE IF (iOption .EQ. 6) THEN
WRITE (ioUnit,*) ’ slit-smeared spheroidal globs: diameter=D’
WRITE (*,*) ’ slit-smeared spheroidal globs: diameter=D’
WRITE (ioUnit,*) ’ slit-length (1/A) = ’, sLengt
WRITE (*,*) ’ slit-length (1/A) = ’, sLengt

ELSE IF (iOption .EQ. 7) THEN
WRITE (ioUnit,*) ’ spheroidal globs: diameter=D’
WRITE (*,*) ’ spheroidal globs: diameter=D’

END IF

WRITE (ioUnit,53303) fac
WRITE (*,53303) fac
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53303 FORMAT (’ Data conversion factor to 1/cm = ’, 1PE12.5)

WRITE (ioUnit,63303) err
WRITE (*,63303) err

63303 FORMAT (’ Error scaling factor = ’, 1PE12.5)

IF (LinLog .EQ. isLog) THEN
WRITE (ioUnit,13304) ’geometric’
WRITE (*,13304) ’geometric’

ELSE
WRITE (ioUnit,13304) ’algebraic’
WRITE (*,13304) ’algebraic’

END IF
13304 FORMAT (’ Histogram bins are distributed in an increasing ’,

> A9, ’ series.’)

WRITE (ioUnit,3304) ’Minimum’, Dmin
WRITE (*,3304) ’Minimum’, Dmin
WRITE (ioUnit,3304) ’Maximum’, Dmax
WRITE (*,3304) ’Maximum’, Dmax

3304 FORMAT (1X, A7, ’ particle dimension D = ’,F12.2,’ A.’)

WRITE (ioUnit,3306) n
WRITE (*,3306) n

3306 FORMAT (’ Number of histogram bins = ’,I4,’.’)

WRITE (ioUnit,3307) itermax
WRITE (*,3307) itermax

3307 FORMAT (’ Maximum number of iterations allowed = ’,I4,’.’)

WRITE (ioUnit,3314) max
WRITE (*,3314) max

3314 FORMAT (’ Program left MaxEnt routine after ’,

* I4,’ iterations.’)

WRITE (ioUnit,3308) npt
WRITE (*,3308) npt

3308 FORMAT (’ Target chi-squared (# data points) = ’,I5,’.’)

WRITE (ioUnit,3309) ChiSq
WRITE (*,3309) ChiSq

3309 FORMAT (’ Best value of chi-squared achieved = ’,F12.6,’.’)

WRITE (ioUnit, 33091) ’the final’, Entropy
WRITE (*, 33091) ’the final’, Entropy
WRITE (ioUnit, 33091) ’a flat’, LOG (FLOAT (n))
WRITE (*, 33091) ’a flat’, LOG (FLOAT (n))

33091 FORMAT (’ Entropy of ’, A9, ’ distribution = ’, F12.7,’.’)

WRITE (ioUnit,33101) SumN
WRITE (*,33101) SumN

33101 FORMAT (’ Total particles = ’, 1PE15.5,’ per cubic cm.’)

WRITE (ioUnit,3310) SumV
WRITE (*,3310) SumV

3310 FORMAT (’ Total volume fraction of all scatterers = ’,

* F15.9,’.’)
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WRITE (ioUnit,3311) ’smaller’, Dmin, f(n+1)
WRITE (ioUnit,3311) ’larger’, Dmax, f(n+2)
WRITE (*,3311) ’smaller’, Dmin, f(n+1)
WRITE (*,3311) ’larger’, Dmax, f(n+2)

3311 FORMAT (’ Volume fraction ’,A7,’ than ’, F12.2,

* ’ A = ’, 1PE13.5,’.’)

WRITE (ioUnit,3312) ’Volume’, ’mode D value’, 2.0 * r(modeV)
WRITE (*,3312) ’Volume’, ’mode D value’, 2.0 * r(modeV)
WRITE (ioUnit,3312) ’Volume’, ’mean D value’, DvMean
WRITE (*,3312) ’Volume’, ’mean D value’, DvMean
WRITE (ioUnit,3312) ’Volume’, ’std. deviation’, DvSDev
WRITE (*,3312) ’Volume’, ’std. deviation’, DvSDev
WRITE (ioUnit,3312) ’Number’, ’mode D value’, 2.0 * r(modeN)
WRITE (*,3312) ’Number’, ’mode D value’, 2.0 * r(modeN)
WRITE (ioUnit,3312) ’Number’, ’mean D value’, DnMean
WRITE (*,3312) ’Number’, ’mean D value’, DnMean
WRITE (ioUnit,3312) ’Number’, ’std. deviation’, DnSDev
WRITE (*,3312) ’Number’, ’std. deviation’, DnSDev

3312 FORMAT (1X, A6, ’-weighted ’, A14, ’ = ’, F12.5, ’ A.’)

WRITE (ioUnit,3313) ’Min’, q(1)
WRITE (*,3313) ’Min’, q(1)
WRITE (ioUnit,3313) ’Max’, q(npt)
WRITE (*,3313) ’Max’, q(npt)

3313 FORMAT (1X, A3,’imum Q-vector = ’, 1PE15.7, ’ 1/A.’)

WRITE (ioUnit,3315) ’User-specified’, Bkg
WRITE (*,3315) ’User-specified’, Bkg
WRITE (ioUnit,3315) ’Suggested’, Bkg - shift
WRITE (*,3315) ’Suggested’, Bkg - shift

3315 FORMAT (1X, A14, ’ background = ’, F18.9,’ input data units’)

WRITE (ioUnit,*) ’ New background should give ChiSq = ’, Chi2Bk
WRITE (*,*) ’ New background should give ChiSq = ’, Chi2Bk

CLOSE (UNIT=ioUnit, STATUS=’keep’)

C Adjust the background default setting
C Shift the intensity data just in case the user wants a Stability Check
C Remember: background shifts down, intensity shifts up
C Don’t forget to put the data back into 1/m units!

Bkg = Bkg - shift
DO 4010 j = 1, npt

datum(j) = (datum(j) + shift) / cm2m
sigma(j) = sigma(j) / cm2m

4010 CONTINUE

IF (ABS ((Chi2Bk-ChiSq)/FLOAT (npt)) .LE. 0.05) THEN
WRITE (*,*) ’ The change in ChiSquared should be < 5%.’

4000 WRITE (*,*) ’ Run the Stability Check? (Y/<N>)’
READ (*,’(A1)’) YN
IF (YN .EQ. ’y’ .OR. YN .EQ. ’Y’) GO TO 228
IF (YN.NE.’ ’ .AND. YN.NE.’n’ .AND. YN.NE.’N’) GO TO 4000

END IF
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WRITE (*,3200) OutFil
3200 FORMAT (/,’ The program is finished.’, /,

1 ’ The output file is: ’, A40)
GO TO 1

3199 STOP
END

SUBROUTINE GetInf (InFile, OutFil, iOption, Aspect, LinLog,
> nBin, Dmin, Dmax, IterMax, RhoSq, fac, err, qMin,
> qMax, Bkg, sLengt)

IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
CHARACTER*40 InFile, OutFil
PARAMETER (Ro2Max = 1.e6, ItrLim = 200, AbsMax = 1.e3)
PARAMETER (DiaMin = 1., DiaMax = 1.e6, ErrMax = 1.e6)
PARAMETER (MaxPts = 300, MaxBin = 102)
PARAMETER (isLin = 1, isLog = 2)

1 WRITE (*,*) ’ Input file? <Quit>’
READ (*, 2) InFile

2 FORMAT (A40)
IF (InFile.EQ.’ ’) RETURN

3 WRITE (*,*) ’ Output file?’
READ (*, 2) OutFil
IF (OutFil .EQ. ’ ’) GO TO 3
IF (OutFil .EQ. InFile) GO TO 1

suggest = qMin
16 WRITE (*,*) ’ Minimum q-vector? [1/A] <’, suggest, ’>’

READ (*, ’(F10.0)’) qMin
IF (qMin .LT. 0) GO TO 16
IF (qMin .EQ. 0) qMin = suggest

suggest = qMax
17 WRITE (*,*) ’ Maximum q-vector? [1/A] <’, suggest, ’>’

READ (*, ’(F10.0)’) qMax
IF (qMax .EQ. 0) qMax = suggest
IF (qMax .LE. 0) GO TO 17
IF (qMax .LE. qMin) GO TO 1

suggest = RhoSq
13 WRITE (*,*) ’ Scattering contrast? [10ˆ28 mˆ-4] <’,suggest,’>’

READ (*, ’(F10.0)’) RhoSq
IF (RhoSq .EQ. 0) RhoSq = suggest
IF (RhoSq .LT. 0 .OR. RhoSq .GT. Ro2Max) GO TO 13

suggest = fac
14 WRITE (*,*) ’ Factor to convert data to 1/cm? <’, suggest, ’>’

READ (*, ’(F10.0)’) fac
IF (fac .EQ. 0) fac = suggest
IF (fac .LE. 0 .OR. fac .GT. AbsMax) GO TO 14

suggest = err
15 WRITE (*,*) ’ Error scaling factor? <’, suggest, ’>’
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READ (*, ’(F10.0)’) err
IF (err .EQ. 0) err = suggest
IF (err .LE. 0 .OR. err .GT. ErrMax) GO TO 15

suggest = Bkg
18 WRITE (*,*) ’ Background? <’, suggest, ’>’

READ (*, ’(F10.0)’) Bkg
IF (Bkg .EQ. 0) Bkg = suggest

Last = iOption
4 WRITE (*,*) ’ Select a form model for the scatterer:’

WRITE (*,*) ’ (See the User Guide for complete explanations)’
WRITE (*,*) ’ 1: rods 2: disks 3: globules’
WRITE (*,*) ’ 4: spheres (usual form) ’,

> ’5: spheres (integrated)’
WRITE (*,*) ’ 6: spheroids (slit-smeared) ’,

> ’7: spheroids (not smeared)’
WRITE (*,*) ’ Which option number? <’, Last, ’>’
READ (*, ’(I4)’) iOption
IF (iOption .EQ. 0) iOption = Last
IF (iOption .LT. 1 .OR. iOption .GT. 7) GO TO 4

suggest = Aspect
6 IF (iOption .GE. 1 .AND. iOption .LE. 3) THEN

WRITE (*,*) ’ AR = Aspect Ratio, useful ranges are indicated’
IF (iOption .EQ. 1) THEN

WRITE (*,*) ’ diameter D, length D * AR, AR > 5’
ELSE IF (iOption .EQ. 2) THEN

WRITE (*,*) ’ thickness D, diameter D / AR, AR < 0.2’
ELSE IF (iOption .EQ. 3) THEN

WRITE (*,*) ’ D x D x D * AR, 0.3 < AR < 3’
END IF
WRITE (*,*) ’ Aspect ratio? <’, suggest, ’>’
READ (*,’(F10.0)’) Aspect
IF (Aspect .EQ. 0) Aspect = suggest
IF (Aspect .LT. 0) GO TO 6

END IF

suggest = sLengt
61 IF (iOption .EQ. 6) THEN

WRITE (*,*) ’ Slit-smeared globs. ’,
> ’Slit-length [1/A]? <’, suggest, ’>’

READ (*,’(F10.0)’) sLengt
IF (sLengt .EQ. 0) sLengt = suggest
IF (sLengt .LT. 0) GO TO 61

END IF

Last = LinLog
7 WRITE (*,*) ’ Bin step scale? (1=Linear, 2=Log) <’, Last, ’>’

READ (*, ’(I4)’) LinLog
IF (LinLog .EQ. 0) LinLog = Last
IF (LinLog .NE. isLin .AND. LinLog .NE. isLog) GO TO 7

Last = nBin
8 WRITE (*,*) ’ Number of histogram bins? <’, Last, ’>’

READ (*, ’(I4)’) nBin
IF (nBin .EQ. 0) nBin = Last
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IF (nBin .LT. 2 .OR. nBin .GT. (MaxBin-2)) GO TO 8

suggest = Dmax
9 WRITE (*,*) ’ Maximum value of D? [A] <’, suggest, ’>’

READ (*, ’(F10.0)’) Dmax
IF (Dmax .EQ. 0) Dmax = suggest
IF (Dmax .LT. nBin*DiaMin .OR. Dmax .GE. DiaMax) GO TO 9

Suggest = Dmax / FLOAT (nBin)
11 WRITE (*,*) ’ Minimum value of D? [A] <’, suggest, ’>’

READ (*, ’(F10.0)’) Dmin
IF (Dmin .EQ. 0) Dmin = suggest
IF (Dmin .GE. DMax .OR. Dmin .LT. DiaMin) GO TO 1

IF (IterMax .GT. ItrLim) IterMax = ItrLim
Last = IterMax

12 WRITE (*,*) ’ Maximum number of iterations? <’, Last, ’>’
READ (*, ’(I4)’) IterMax
IF (IterMax .EQ. 0) IterMax = Last
IF (IterMax .LT. 0 .OR. IterMax .GT. ItrLim) GO TO 12

RETURN
END

SUBROUTINE opus(n,npt,x,ox) ! solution-space -> data-space
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
PARAMETER (MaxPts=300, MaxBin=102)
COMMON /space1/ grid
DIMENSION x(MaxBin), grid(MaxBin,MaxPts), ox(MaxPts)
DO 3 j = 1, npt

sum = 0.
DO 4 i = 1, n
sum = sum + x(i) * grid(i,j)

4 CONTINUE
ox(j) = sum

3 CONTINUE
RETURN
END

SUBROUTINE tropus(n,npt,ox,x) ! data-space -> solution-space
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
PARAMETER (MaxPts=300, MaxBin=102)
COMMON /space1/ grid
DIMENSION x(MaxBin), grid(MaxBin,MaxPts), ox(MaxPts)
DO 5 i = 1, n

sum = 0.
DO 6 j = 1, npt

sum = sum + ox(j) * grid(i,j)
6 CONTINUE

x(i) = sum
5 CONTINUE

RETURN
END
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SUBROUTINE MaxEnt(n,npt, f,datum,sigma, flat,base,iter,itermax)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
PARAMETER (MaxPts=300, MaxBin=102)
DIMENSION f(MaxBin), datum(MaxPts), sigma(MaxPts)
DIMENSION base(MaxBin)

COMMON /space1/ grid
DIMENSION grid(MaxBin,MaxPts)

COMMON /space5/ chisq, chtarg, chizer, fSum, blank
COMMON /space2/ beta, c1, c2, s1, s2
DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)

COMMON /space3/ ox, z, cgrad, sgrad, xi, eta
DIMENSION ox(MaxPts), z(MaxPts)
DIMENSION cgrad(MaxBin), sgrad(MaxBin)
DIMENSION xi(MaxBin,3), eta(MaxPts,3)

DIMENSION Entropy(201), Convrg(201)
PARAMETER (TstLim = 0.05) ! for convergence
DATA one, zero /1.0, 0.0/ ! compiler-independence!

blank = flat
exp1 = EXP(one)

IF (blank .EQ. zero) THEN
DO 1004 i = 1, n

1004 blank = blank + base(i)
blank = blank / FLOAT(n)
WRITE (*,*) ’ Average of BASE = ’, blank

ELSE
WRITE (*,*) ’ Setting BASE constant at ’, blank
DO 1003 i = 1, n

1003 base(i) = blank
ENDIF

WRITE (*,*) ’ MaxEnt routine beginning ...’

chizer = FLOAT(npt)
chtarg = chizer
m = 3
DO 8 i = 1, n

8 f(i) = base(i) ! initial distribution is featureless

iter = 0
6 iter = iter + 1 ! The iteration loop begins here!

CALL opus (n, npt, f, ox) ! calc. the model intensity from "f"
chisq = zero
DO 10 j = 1, npt

a = (ox(j) - datum(j)) / sigma(j)
chisq = chisq + a**2

10 ox(j) = 2. * a / sigma(j)
CALL tropus(n,npt,ox,cgrad) ! cGradient = Grid * ox
test = zero ! mismatch between entropy and ChiSquared gradients
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snorm = zero ! entropy term
cnorm = zero ! ChiSqr term
tnorm = zero ! norm for the gradient term TEST
fSum = zero ! find the sum of the f-vector
DO 12 i = 1, n

fSum = fSum + f(i)
sgrad(i) = -LOG(f(i)/base(i)) / (blank*exp1)
snorm = snorm + f(i) * sgrad(i)**2
cnorm = cnorm + f(i) * cgrad(i)**2
tnorm = tnorm + f(i) * sgrad(i) * cgrad(i)

12 CONTINUE
snorm = SQRT(snorm)
cnorm = SQRT(cnorm)
a = one
b = one / cnorm
IF (iter .GT. 1) THEN

test = SQRT(0.5*(one-tnorm/(snorm*cnorm)))
a = 0.5 / (snorm * test)
b = 0.5 * b / test

ENDIF
DO 13 i = 1, n

xi(i,1) = f(i) * cgrad(i) / cnorm
xi(i,2) = f(i) * (a * sgrad(i) - b * cgrad(i))

13 CONTINUE
CALL opus (n,npt,xi(1,1),eta(1,1))
CALL opus (n,npt,xi(1,2),eta(1,2))
DO 14 j = 1, npt

ox(j) = eta(j,2) / (sigma(j)**2)
14 CONTINUE

CALL tropus (n,npt,ox,xi(1,3))
a = zero
DO 15 i = 1, n

b = f(i) * xi(i,3)
a = a + b * xi(i,3)
xi(i,3) = b

15 CONTINUE
a = one / SQRT(a)
DO 16 i = 1, n

xi(i,3) = a * xi(i,3)
16 CONTINUE

CALL opus (n,npt,xi(1,3),eta(1,3))
DO 17 k = 1, m

s1(k) = zero
c1(k) = zero
DO 18 i = 1, n

s1(k) = s1(k) + xi(i,k) * sgrad(i)
c1(k) = c1(k) + xi(i,k) * cgrad(i)

18 CONTINUE
c1(k) = c1(k) / chisq

17 CONTINUE
DO 19 k = 1, m

DO 19 l = 1, k
s2(k,l) = zero
c2(k,l) = zero
DO 20 i = 1, n

s2(k,l) = s2(k,l) - xi(i,k) * xi(i,l) / f(i)
20 CONTINUE
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DO 21 j = 1, npt
c2(k,l) = c2(k,l) + eta(j,k) * eta(j,l) / (sigma(j)**2)

21 CONTINUE
s2(k,l) = s2(k,l) / blank
c2(k,l) = 2. * c2(k,l) / chisq

19 CONTINUE
c2(1,2) = c2(2,1)
c2(1,3) = c2(3,1)
c2(2,3) = c2(3,2)
s2(1,2) = s2(2,1)
s2(1,3) = s2(3,1)
s2(2,3) = s2(3,2)
beta(1) = -0.5 * c1(1) / c2(1,1)
beta(2) = zero
beta(3) = zero
IF (iter .GT. 1) CALL Move(3)

C Modify the current distribution (f-vector)
fSum = zero ! find the sum of the f-vector
fChange = zero ! and how much did it change?
DO 23 i = 1, n

df = beta(1)*xi(i,1)+beta(2)*xi(i,2)+beta(3)*xi(i,3)
IF (df .LT. -f(i)) df = 0.001 * base(i) - f(i) ! a patch
f(i) = f(i) + df ! adjust the f-vector
fSum = fSum + f(i)
fChange = fChange + df

23 CONTINUE

s = zero
DO 24 i = 1, n

temp = f(i) / fSum ! fraction of f(i) in this bin
s = s - temp * LOG (temp) ! from Skilling and Bryan, eq. 1

24 CONTINUE

CALL opus (n, nPt, f, z) ! model the data-space from f(*)
ChiSq = zero ! get the new ChiSquared
DO 25 j = 1, nPt

z(j) = (datum(j) - z(j)) / sigma(j) ! the residuals
ChiSq = ChiSq + z(j)**2 ! report this ChiSq, not the one above

25 CONTINUE

Entropy(iter) = s
Convrg(iter) = LOG (ChiSq)
IF (iter .GT. 2) THEN ! show our progress

temp = (Convrg(iter) + Convrg(iter-1) + Convrg (iter-2))/3.
IF (ABS (one - Convrg(iter)/temp) .GT. 0.02) THEN

WRITE (*,*)
WRITE (*,*) ’ LOG (ChiSq) vs. iteration number’
CALL BasPlt (iter, Convrg, LOG (ChiZer))

END IF
WRITE (*,*)
WRITE (*,*) ’ Entropy vs. iteration number’
temp = LOG (FLOAT (n)) ! the maximum entropy possible
CALL BasPlt (iter, Entropy, temp)

END IF

300 WRITE (*,*)
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WRITE (*,*) ’ Residuals’
CALL ResPlt (npt, z)

WRITE (*,*)
WRITE (*,*) ’ Distribution’
CALL BasPlt (n, f, blank)

WRITE (*,*) ’ #’, iter, ’ of ’, itermax, ’, n = ’, npt
WRITE (*,200) test, s
WRITE (*,201) ’target’,SQRT(chtarg/npt), ’now’,SQRT(chisq/npt)
WRITE (*,202) ’sum’, fSum, ’ % change’, 100.*fChange/fSum

200 FORMAT (’ test = ’, F9.5, ’, Entropy = ’, F12.7)
201 FORMAT (’ SQRT((Chiˆ2)/n):’, A8,’ = ’, F12.8,A10,’ = ’, F12.8)
202 FORMAT (’ f-vector:’, A8,’ = ’, F12.8,A10,’ = ’, F12.8)

C See if we have finished our task.
IF (ABS(chisq/chizer-one) .LT. 0.01) THEN ! hardest test first

IF (test .LT. TstLim) THEN ! same solution gradient?
C We’ve solved it but now must check for a bizarre condition.
C Calling routine says we failed if "iter = iterMax".
C Let’s increment (maybe) iterMax so this doesn’t happen.

IF (iter .EQ. iterMax) iterMax = iterMax + 1
RETURN

END IF
END IF
IF (iter .LT. iterMax) GO TO 6

C Ask for more time to finish the job.
WRITE (*,*)
WRITE (*,*) ’ Maximum iterations have been reached.’

2001 WRITE (*,*) ’ How many more iterations? <none>’
READ (*,’(I4)’) more
IF (more .LT. 0) GO TO 2001
IF (more .EQ. 0) RETURN
iterMax = iterMax + more
GO TO 6
END

SUBROUTINE Move(m)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
PARAMETER ( MxLoop = 500 ) ! for no solution
PARAMETER ( Passes = 1.e-3 ) ! convergence test
COMMON /space5/ chisq, chtarg, chizer, fSum, blank
COMMON /space2/ beta, c1, c2, s1, s2
DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)
DATA one, zero /1.0, 0.0/ ! compiler-independence!
a1 = zero ! lower bracket "a"
a2 = one ! upper bracket of "a"
cmin = ChiNow (a1, m)
IF (cmin*chisq .GT. chizer) ctarg = 0.5*(one + cmin)
IF (cmin*chisq .LE. chizer) ctarg = chizer/chisq
f1 = cmin - ctarg
f2 = ChiNow (a2,m) - ctarg
DO 1 loop = 1, MxLoop

anew = 0.5 * (a1+a2) ! choose a new "a"
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fx = ChiNow (anew,m) - ctarg
IF (f1*fx .GT. zero) a1 = anew
IF (f1*fx .GT. zero) f1 = fx
IF (f2*fx .GT. zero) a2 = anew
IF (f2*fx .GT. zero) f2 = fx
IF (abs(fx) .LT. Passes) GO TO 2

1 CONTINUE

C If the preceding loop finishes, then we do not seem to be converging.
C Stop gracefully because not every computer uses control-C (etc.)
C as an exit procedure.

WRITE (*,*) ’ Loop counter = ’, MxLoop
PAUSE ’ No convergence in alpha chop (MOVE). Press return ...’
STOP ’ Program cannot continue.’

2 w = Dist (m)
IF (w .LE. 0.1*fSum/blank) GO TO 1042
DO 1044 k=1,m

beta(k) = beta(k) * SQRT(0.1 * fSum/(blank * w))
1044 CONTINUE
1042 chtarg = ctarg * chisq

RETURN
END

REAL*8 FUNCTION Dist (m)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /space5/ chisq, chtarg, chizer, fSum, blank
COMMON /space2/ beta, c1, c2, s1, s2
DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)
DATA one, zero /1.0, 0.0/ ! compiler-independence!
w = zero
DO 26 k = 1, m

z = zero
DO 27 l = 1, m

z = z - s2(k,l) * beta(l)
27 CONTINUE

w = w + beta(k) * z
26 CONTINUE

Dist = w
RETURN
END

REAL*8 FUNCTION ChiNow(ax,m)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
COMMON /space5/ chisq, chtarg, chizer, fSum, blank
COMMON /space2/ beta, c1, c2, s1, s2
DIMENSION beta(3), c1(3), c2(3,3), s1(3), s2(3,3)
DIMENSION a(3,3), b(3)
DATA one, zero /1.0, 0.0/ ! compiler-independence!
bx = one - ax
DO 28 k = 1, m

DO 29 l = 1, m
a(k,l) = bx * c2(k,l) - ax * s2(k,l)
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29 CONTINUE
b(k) = -(bx * c1(k) - ax * s1(k))

28 CONTINUE
CALL ChoSol(a,b,m,beta)
w = zero
DO 31 k = 1, m

z = zero
DO 32 l = 1, m

z = z + c2(k,l) * beta(l)
32 CONTINUE

w = w + beta(k) * (c1(k) + 0.5 * z)
31 CONTINUE

ChiNow = one + w
RETURN
END

SUBROUTINE ChoSol(a, b, n, beta)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
DIMENSION fl(3,3), a(3,3), bl(3), b(3), beta(3)
DATA one, zero /1.0, 0.0/ ! compiler-independence!
IF (a(1,1) .LE. zero) THEN

WRITE (*,*) ’ Fatal error in CHOSOL: a(1,1) = ’, a(1,1)
PAUSE ’ Press <RETURN> to end program ...’
STOP ’ Program cannot continue.’

END IF
fl(1,1) = SQRT(a(1,1))
DO 35 i = 2, n

fl(i,1) = a(i,1) / fl(1,1)
DO 35 j = 2, i

z = zero
DO 36 k = 1, j-1

z = z + fl(i,k) * fl(j,k)
36 CONTINUE

z = a(i,j) - z
IF (j .EQ. i) fl(i,j) = SQRT(z)
IF (j .NE. i) fl(i,j) = z / fl(j,j)

35 CONTINUE
bl(1) = b(1) / fl(1,1)
DO 37 i=2, n

z = zero
DO 38 k = 1, i-1

z = z + fl(i,k) * bl(k)
38 CONTINUE

bl(i) = (b(i) - z) / fl(i,i)
37 CONTINUE

beta(n) = bl(n) / fl(n,n)
DO 39 i1 = 1, n-1

i = n - i1
z = zero
DO 40 k = i+1, n

z = z + fl(k,i) * beta(k)
40 CONTINUE

beta(i) = (bl(i) - z) / fl(i,i)
39 CONTINUE

RETURN
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END

SUBROUTINE ResPlt (n, x)
C Draw a plot of the standardized residuals on the screen.
C Mark the rows of + and - one standard deviation.

IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
DIMENSION x(1)
CHARACTER*1 Blank, Symbol, hBordr, vBordr, resSym
PARAMETER (Blank = ’ ’, Symbol = ’O’, resSym = ’=’)
PARAMETER (hBordr = ’-’, vBordr = ’|’)
COMMON /space4/ screen, MaxCol, MaxRow, MxC2, MxR2
CHARACTER*1 screen(100, 150)
IF (n .LT. 2) RETURN ! not enough data

C Find out how many points to pack per column and how many columns
nPack = 1 + INT(FLOAT (n) / MaxCol - 1./n)
nCol = INT((n - 1./n)/nPack + 1)

C prepare the "screen" for drawing
DO 1 j = 1, nCol + 2

DO 1 i = 1, MxR2
screen(i,j) = Blank

1 CONTINUE
DO 2 i = 2, nCol + 1

screen(MxR2,i) = hBordr
2 screen(1,i) = hBordr

DO 3 i = 2, MaxRow + 1
screen(i,nCol+2) = vBordr

3 screen(i,1) = vBordr

C get the data limits
xMax = 1.
xMin = -1.
DO 4 i = 1, n

IF (x(i) .GT. xMax) xMax = x(i)
IF (x(i) .LT. xMin) xMin = x(i)

4 CONTINUE
RowDel = (MaxRow - 1) / (xMax - xMin)

C show the standard deviation bars
mPlus = 1 + INT((1 - xMin)*RowDel + 1)
mMinus = 1 + INT((-1 - xMin)*RowDel + 1)
DO 5 i = 2, nCol + 1

screen(mMinus,i) = resSym
5 screen(mPlus,i) = resSym

C draw the data (overdrawing the residuals bars if necessary)
DO 6 i = 1, n

mCol = 1 + INT((i - 1./n)/nPack + 1) ! addressing function
mRow = 1 + INT((x(i) - xMin)*RowDel + 1) ! +1 for the plot frame
screen(mRow, mCol) = Symbol

6 CONTINUE

C convey the "screen" to the default output
WRITE (*,*) nPack, ’ point(s) per column’
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WRITE (*,*) 1./RowDel, ’ standard deviations per row’
DO 7 i = MxR2, 1, -1

7 WRITE (*,*) (screen(i,j), j = 1, nCol + 2)

RETURN
END

SUBROUTINE BasPlt (n, x, basis)
C Draw a plot of some data and indicate a basis line on the
C the plot. That is, that line below which the data is
C not meaningful. The basis here is taken to be a constant.

IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
DIMENSION x(1)
CHARACTER*1 Blank, Symbol, hBordr, vBordr, BasSym
PARAMETER (Blank = ’ ’, Symbol = ’O’, BasSym = ’=’)
PARAMETER (hBordr = ’-’, vBordr = ’|’)

COMMON /space4/ screen, MaxCol, MaxRow, MxC2, MxR2
CHARACTER*1 screen(100, 150)

IF (n .LT. 2) RETURN ! not enough data

C Find out how many points to pack per column and how many columns
nPack = 1 + INT(FLOAT (n) / MaxCol - 1./n)
nCol = INT((n - 1./n)/nPack + 1)

C prepare the "screen" for drawing
DO 1 j = 1, nCol + 2

DO 1 i = 1, MxR2
screen(i,j) = Blank

1 CONTINUE
DO 2 i = 2, nCol + 1

screen(MxR2,i) = hBordr
2 screen(1,i) = hBordr

DO 3 i = 2, MaxRow + 1
screen(i,nCol+2) = vBordr

3 screen(i,1) = vBordr

C get the data limits
xMax = basis
xMin = basis
DO 4 i = 1, n

IF (x(i) .GT. xMax) xMax = x(i)
IF (x(i) .LT. xMin) xMin = x(i)

4 CONTINUE
RowDel = (MaxRow - 1) / (xMax - xMin)

C show the basis line
mPlus = 1 + INT((basis - xMin)*RowDel + 1)
DO 5 i = 2, nCol + 1

5 screen(mPlus,i) = basSym

C draw the data (overdrawing the basis bars if necessary)
DO 6 i = 1, n

mCol = 1 + INT((i - 1./n)/nPack + 1) ! addressing function
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mRow = 1 + INT((x(i) - xMin)*RowDel + 1) ! +1 for the plot frame
screen(mRow, mCol) = Symbol

6 CONTINUE

C convey the "screen" to the default output
WRITE (*,*) nPack, ’ point(s) per column’
WRITE (*,*) 1./RowDel, ’ units per row’
DO 7 i = MxR2, 1, -1

7 WRITE (*,*) (screen(i,j), j = 1, nCol + 2)

RETURN
END

SUBROUTINE Plot (n,x,y)
C Make a scatter plot on the default display device (UNIT=*).
C MaxRow and MaxCol correspond to the display dimensions.

IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT INTEGER*4 (I-N)
DIMENSION x(1), y(1)
CHARACTER*1 Blank, Symbol, hBordr, vBordr
PARAMETER (Blank = ’ ’, Symbol = ’O’)
PARAMETER (hBordr = ’-’, vBordr = ’|’)

COMMON /space4/ screen, MaxCol, MaxRow, MxC2, MxR2
CHARACTER*1 screen(100, 150)

IF (n .LT. 2) RETURN ! not enough data

C prepare the "screen" for drawing
DO 1 j = 1, MxC2

DO 1 i = 1, MxR2
screen(i,j) = Blank

1 CONTINUE
DO 2 i = 2, MaxCol+1

screen(MxR2,i) = hBordr
2 screen(1,i) = hBordr

DO 3 i = 2, MaxRow+1
screen(i,MxC2) = vBordr

3 screen(i,1) = vBordr

C get the data limits
xMin = x(1)
xMax = x(1)
yMin = y(1)
yMax = y(1)
DO 4 i = 2, n

IF (x(i).GT.xMax) xMax=x(i)
IF (x(i).LT.xMin) xMin=x(i)
IF (y(i).GT.yMax) yMax=y(i)
IF (y(i).LT.yMin) yMin=y(i)

4 CONTINUE
ColDel = (MaxCol - 1) / (xMax - xMin)
RowDel = (MaxRow - 1) / (yMax - yMin)

C data scaling functions are offset by +1 for plot frame
DO 5 i = 1, n
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mCol = 1 + INT((x(i) - xMin)*ColDel + 1)
mRow = 1 + INT((y(i) - yMin)*RowDel + 1)

5 screen(mRow, mCol) = Symbol

C convey the "screen" to the default output
WRITE (*,*) 1./ColDel, ’ units per column’
WRITE (*,*) 1./RowDel, ’ units per row’
DO 6 i = MaxRow + 2, 1, -1

6 WRITE (*,*) (screen(i,j), j = 1, MaxCol + 2)
RETURN
END
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